Danaei G, Singh GM, Paciorek CJ, Lin JK, Cowan MJ, Finucane MM, et al. The global cardiovascular risk transition: associations of four metabolic risk factors with national income, urbanization, and Western diet in 1980 and 2008. Circulation. 2013;127(14):1493–502 https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.113.001470.
Article
PubMed
PubMed Central
Google Scholar
Hegde SM, Solomon SD. Influence of physical activity on hypertension and cardiac structure and function. Curr Hypertens Rep. 2015;17(10):77 http://link.springer.com/10.1007/s11906-015-0588-3.
Article
PubMed
PubMed Central
Google Scholar
Hojhabrimanesh A, Akhlaghi M, Rahmani E, Amanat S, Atefi M, Najafi M, et al. A Western dietary pattern is associated with higher blood pressure in Iranian adolescents. Eur J Nutr. 2017;56(1):399–408 http://link.springer.com/10.1007/s00394-015-1090-z.
Article
CAS
PubMed
Google Scholar
Ibrahim MM, Damasceno A. Hypertension in developing countries. Lancet. 2012;380(9841):611–9 https://linkinghub.elsevier.com/retrieve/pii/S0140673612608617.
Article
PubMed
Google Scholar
World Health Organization. Hypertension [Fact sheet] [Internet]. 2019. https://www.who.int/news-room/fact-sheets/detail/hypertension
da Cunha MA, Carneiro MFH, Grotto D, Adeyemi JA, Barbosa F. Arsenic, cadmium, and mercury-induced hypertension: mechanisms and epidemiological findings. J Toxicol Environ Health, Part B. 2018;21(2):61–82 https://www.tandfonline.com/doi/full/10.1080/10937404.2018.1432025.
Article
CAS
Google Scholar
Lin C-Y, Huang P-C, Wu C, Sung F-C, Su T-C. Association between urine lead levels and cardiovascular disease risk factors, carotid intima-media thickness and metabolic syndrome in adolescents and young adults. Int J Hyg Environ Health. 2020;223(1):248–55 https://linkinghub.elsevier.com/retrieve/pii/S1438463919303943.
Article
CAS
PubMed
Google Scholar
Eum K-D, Lee M-S, Paek D. Cadmium in blood and hypertension. Sci Total Environ. 2008;407(1):147–53 https://linkinghub.elsevier.com/retrieve/pii/S0048969708008929.
Article
CAS
PubMed
Google Scholar
Satarug S, Nishijo M, Lasker JM, Edwards RJ, Moore MR. Kidney dysfunction and hypertension: role for cadmium, P450 and heme oxygenases? Tohoku J Exp Med. 2006;208(3):179–202 https://www.jstage.jst.go.jp/article/tjem/208/3/208_3_179/_article.
Article
CAS
PubMed
Google Scholar
Schiffrin EL, Lipman ML, Mann JFE. Chronic kidney disease. Circulation. 2007;116(1):85–97 https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.106.678342.
Article
PubMed
Google Scholar
Vaziri ND. Mechanisms of lead-induced hypertension and cardiovascular disease. Am J Physiol-Heart Circulatory Physiol. 2008;295(2):H454–65 https://www.physiology.org/doi/10.1152/ajpheart.00158.2008.
Article
CAS
Google Scholar
Akther J, Nabi AHMN, Ebihara A. Heavy metals as environmental risk factors for cardiovascular diseases: from the perspective of the renin angiotensin aldosterone system and oxidative stress. Rev Agricull Sci. 2019;7:68–83 https://www.jstage.jst.go.jp/article/ras/7/0/7_68/_article.
Article
Google Scholar
Kuruppu D, Hendrie HC, Yang L, Gao S. Selenium levels and hypertension: a systematic review of the literature. Public Health Nutr. 2014;17(6):1342–52 https://www.cambridge.org/core/product/identifier/S1368980013000992/type/journal_article.
Article
PubMed
Google Scholar
Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179(4073):588–90 https://www.sciencemag.org/lookup/doi/10.1126/science.179.4073.588.
Article
CAS
PubMed
Google Scholar
Yang R, Liu Y, Zhou Z. Selenium and selenoproteins, from structure, function to food resource and nutrition. Food Sci Technol Res. 2017;23(3):363–73 https://www.jstage.jst.go.jp/article/fstr/23/3/23_363/_article.
Article
CAS
Google Scholar
Zwolak I, Zaporowska H. Selenium interactions and toxicity: a review. Cell Biol Toxicol. 2012;28(1):31–46 http://link.springer.com/10.1007/s10565-011-9203-9.
Article
CAS
PubMed
Google Scholar
Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017;482(3):419–25 https://linkinghub.elsevier.com/retrieve/pii/S0006291X16317715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Espinola-Klein C, Rupprecht HJ, Bickel C, Schnabel R, Genth-Zotz S, Torzewski M, et al. Glutathione peroxidase-1 activity, atherosclerotic burden, and cardiovascular prognosis. Am J Cardiol. 2007;99(6):808–12 https://linkinghub.elsevier.com/retrieve/pii/S0002914906023721.
Article
CAS
PubMed
Google Scholar
Jin RC, Mahoney CE. (Coleman) Anderson L, Ottaviano F, Croce K, Leopold JA, et al. Glutathione peroxidase-3 deficiency promotes platelet-dependent thrombosis in vivo. Circulation. 2011;123(18):1963–73 https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.110.000034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castiello F, Olmedo P, Gil F, Molina M, Mundo A, Romero RR, et al. Association of urinary metal concentrations with blood pressure and serum hormones in Spanish male adolescents. Environ Res. 2020;182:108958 https://linkinghub.elsevier.com/retrieve/pii/S0013935119307558.
Article
CAS
PubMed
Google Scholar
Franceschini N, Fry RC, Balakrishnan P, Navas-Acien A, Oliver-Williams C, Howard AG, et al. Cadmium body burden and increased blood pressure in middle-aged American Indians: the Strong Heart Study. J Hum Hypertens. 2017;31(3):225–30 http://www.nature.com/articles/jhh201667.
Article
CAS
PubMed
Google Scholar
Gambelunghe A, Sallsten G, Borné Y, Forsgard N, Hedblad B, Nilsson P, et al. Low-level exposure to lead, blood pressure, and hypertension in a population-based cohort. Environ Res. 2016;149:157–63 https://linkinghub.elsevier.com/retrieve/pii/S0013935116301876.
Article
CAS
PubMed
Google Scholar
Satarug S, Nishijo M, Ujjin P, Vanavanitkun Y, Moore MR. Cadmium-induced nephropathy in the development of high blood pressure. Toxicol Lett. 2005;157(1):57–68 https://linkinghub.elsevier.com/retrieve/pii/S0378427405000123.
Article
CAS
PubMed
Google Scholar
Whittemore AS, DiCiccio Y, Provenzano G. Urinary cadmium and blood pressure: results from the NHANES II survey. Environ Health Perspect. 1991;91:133–40 https://ehp.niehs.nih.gov/doi/10.1289/ehp.9191133.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skröder H, Hawkesworth S, Kippler M, El Arifeen S, Wagatsuma Y, Moore SE, et al. Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic - potential alleviation by selenium. Environ Res. 2015;140:205–13 https://linkinghub.elsevier.com/retrieve/pii/S0013935115001164.
Article
PubMed
CAS
Google Scholar
Yao B, Lu X, Xu L, Wang Y, Qu H, Zhou H. Relationship between low-level lead, cadmium and mercury exposures and blood pressure in children and adolescents aged 8–17 years: an exposure-response analysis of NHANES 2007–2016. Sci Total Environ. 2020;726:138446 https://linkinghub.elsevier.com/retrieve/pii/S0048969720319598.
Article
CAS
PubMed
Google Scholar
Gao Y, Zhu X, Shrubsole MJ, Fan L, Xia Z, Harris RC, et al. The modifying effect of kidney function on the association of cadmium exposure with blood pressure and cardiovascular mortality: NHANES 1999–2010. Toxicol Appl Pharmacol. 2018;353:15–22 https://linkinghub.elsevier.com/retrieve/pii/S0041008X18302448.
Article
CAS
PubMed
Google Scholar
Ameer SS, Engström K, Harari F, Concha G, Vahter M, Broberg K. The effects of arsenic exposure on blood pressure and early risk markers of cardiovascular disease: evidence for population differences. Environ Res. 2015;140:32–6 https://linkinghub.elsevier.com/retrieve/pii/S001393511500081X.
Article
CAS
PubMed
Google Scholar
Hossain K, Suzuki T, Hasibuzzaman MM, Islam MS, Rahman A, Paul SK, et al. Chronic exposure to arsenic, LINE-1 hypomethylation, and blood pressure: a cross-sectional study in Bangladesh. Environ Health. 2017;16(1):20 http://ehjournal.biomedcentral.com/articles/10.1186/s12940-017-0231-7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Islam M, Khan I, Attia J, Hassan S, McEvoy M, D’Este C, et al. Association between hypertension and chronic arsenic exposure in drinking water: a cross-sectional study in Bangladesh. Int J Environ Res Public Health. 2012;9(12):4522–36 http://www.mdpi.com/1660-4601/9/12/4522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nawrot TS, Staessen JA, Roels HA, Den Hond E, Thijs L, Fagard RH, et al. Blood pressure and blood selenium: a cross-sectional and longitudinal population study. Eur Heart J. 2007;28(5):628–33 https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehl479.
Article
CAS
PubMed
Google Scholar
Li N, Gao Z, Luo D, Tang X, Chen D, Hu Y. Selenium level in the environment and the population of Zhoukoudian area, Beijing, China. Sci Total Environ. 2007;381(1–3):105–11 https://linkinghub.elsevier.com/retrieve/pii/S0048969707003737.
Article
CAS
PubMed
Google Scholar
Su L, Jin Y, Unverzagt FW, Liang C, Cheng Y, Hake AM, et al. Longitudinal association between selenium levels and hypertension in a rural elderly Chinese cohort. J Nutr Health Aging. 2016;20(10):983–8 http://link.springer.com/10.1007/s12603-016-0700-7.
Article
CAS
PubMed
Google Scholar
Vinceti M, Chawla R, Filippini T, Dutt C, Cilloni S, Loomba R, et al. Blood pressure levels and hypertension prevalence in a high selenium environment: results from a cross-sectional study. Nutr Metab Cardiovasc Dis. 2019;29(4):398–408 https://linkinghub.elsevier.com/retrieve/pii/S0939475319300213.
Article
CAS
PubMed
Google Scholar
Arnaud J, Akbaraly NT, Hininger I, Roussel A-M, Berr C. Factors associated with longitudinal plasma selenium decline in the elderly: the EVA study. J Nutr Biochem. 2007;18(7):482–7 https://linkinghub.elsevier.com/retrieve/pii/S0955286306002282.
Article
CAS
PubMed
Google Scholar
Bulka CM, Persky VW, Daviglus ML, Durazo-Arvizu RA, Argos M. Multiple metal exposures and metabolic syndrome: a cross-sectional analysis of the National Health and Nutrition Examination Survey 2011–2014. Environ Res. 2019;168:397–405 https://linkinghub.elsevier.com/retrieve/pii/S0013935118305565.
Article
CAS
PubMed
Google Scholar
Taittonen L, Nuutinen M, Räsänen L, Mussalo-Rauhamaa H, Turtinen J, Uhari M. Lack of association between copper, zinc, selenium and blood pressure among healthy children. J Hum Hypertens. 1997;11(7):429–33 http://www.nature.com/articles/1000466.
Article
CAS
PubMed
Google Scholar
Borjesson J, Bellander T, Jarup L, Elinder CG, Mattsson S. In vivo analysis of cadmium in battery workers versus measurements of blood, urine, and workplace air. Occup Environ Med. 1997;54(6):424–31 https://oem.bmj.com/lookup/doi/10.1136/oem.54.6.424.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vacchi-Suzzi C, Kruse D, Harrington J, Levine K, Meliker JR. Is urinary cadmium a biomarker of long-term exposure in humans?A review. Curr Environ Health Reports. 2016;3(4):450–8 http://link.springer.com/10.1007/s40572-016-0107-y.
Article
CAS
Google Scholar
Hughes MF. Biomarkers of exposure: a case study with inorganic arsenic. Environ Health Perspect. 2006;114(11):1790–6 https://ehp.niehs.nih.gov/doi/10.1289/ehp.9058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gulson BL, Cameron MA, Smith AJ, Mizon KJ, Korsch MJ, Vimpani G, et al. Blood lead–urine lead relationships in adults and children. Environ Res. 1998;78(2):152–60 https://linkinghub.elsevier.com/retrieve/pii/S001393519793810X.
Article
CAS
PubMed
Google Scholar
Sommar JN, Hedmer M, Lundh T, Nilsson L, Skerfving S, Bergdahl IA. Investigation of lead concentrations in whole blood, plasma and urine as biomarkers for biological monitoring of lead exposure. J Expo Sci Environ Epidemiol. 2014;24(1):51–7 http://www.nature.com/articles/jes20134.
Article
CAS
PubMed
Google Scholar
Alaejos MS, Romero CD. Urinary selenium concentrations. Clin Chem. 1993;39(10):2040–52.
Article
Google Scholar
Longnecker MP, Stram DO, Taylor PR, Levander OA, Howe M, Veillon C, et al. Use of selenium concentration in whole blood, serum, toenails, or urine as a surrogate measure of selenium intake. Epidemiology. 1996;7(4):384–90 https://journals.lww.com/epidem/Abstract/1996/07000/Use_of_Selenium_Concentration_in_Whole_Blood.10.aspx.
Article
CAS
PubMed
Google Scholar
Wąsowicz W, Zachara BA. Selenium concentrations in the blood and urine of a healthy Polish sub-population. Clin Chem Lab Med. 1987;25(7):409–12 https://www.degruyter.com/document/doi/10.1515/cclm.1987.25.7.409/html.
Article
Google Scholar
Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect. 2005;113(2):192–200 https://ehp.niehs.nih.gov/doi/10.1289/ehp.7337.
Article
CAS
PubMed
Google Scholar
Watanabe C, Inaoka T, Kadono T, Nagano M, Nakamura S, Ushijima K, et al. Males in rural Bangladeshi communities are more susceptible to chronic arsenic poisoning than females: analyses based on urinary arsenic. Environ Health Perspect. 2001;109(12):1265–70 https://ehp.niehs.nih.gov/doi/10.1289/ehp.011091265.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nordberg GF, Jin T, Hong F, Zhang A, Buchet JP, Bernard A. Biomarkers of cadmium and arsenic interactions. Toxicol Appl Pharmacol. 2005;206(2):191–7 https://linkinghub.elsevier.com/retrieve/pii/S0041008X05001018.
Article
CAS
PubMed
Google Scholar
Komaromy-Hiller G, Ash KO, Costa R, Howerton K. Comparison of representative ranges based on U.S. patient population and literature reference intervals for urinary trace elements. Clin Chim Acta. 2000;296(1–2):71–90 https://linkinghub.elsevier.com/retrieve/pii/S0009898100002059.
Article
CAS
PubMed
Google Scholar
Ezaki T, Tsukahara T, Moriguchi J, Furuki K, Fukui Y, Ukai H, et al. No clear-cut evidence for cadmium-induced renal tubular dysfunction among over 10,000 women in the Japanese general population: a nationwide large-scale survey. Int Arch Occup Environ Health. 2003;76(3):186–96 http://link.springer.com/10.1007/s00420-002-0389-2.
Article
CAS
PubMed
Google Scholar
Ikeda M, Zhang Z-W, Shimbo S, Watanabe T, Nakatsuka H, Moon C-S, et al. Exposure of women in general populations to lead via food and air in East and Southeast Asia. Am J Ind Med. 2000;38(3):271–80 https://onlinelibrary.wiley.com/doi/10.1002/1097-0274(200009)38:3%3C271::AID-AJIM5%3E3.0.CO;2-3.
Article
CAS
PubMed
Google Scholar
Hasunuma R, Tsuda M, Ogawa T, Kawanishi Y. Urinary selenium levels in Japanese males and females. Bull Environ Contam Toxicol. 1990;44(4):501–7 http://link.springer.com/10.1007/BF01700867.
Article
CAS
PubMed
Google Scholar
Inoue Y, Umezaki M, Jiang H, Li D, Du J, Jin Y, et al. Urinary concentrations of toxic and essential trace elements among rural residents in Hainan Island, China. Int J Environ Res Public Health. 2014;11(12):13047–64 http://www.mdpi.com/1660-4601/11/12/13047.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiue I, Hristova K. Higher urinary heavy metal, phthalate and arsenic concentrations accounted for 3–19% of the population attributable risk for high blood pressure: US NHANES, 2009–2012. Hypertens Res. 2014;37(12):1075–81 http://www.nature.com/articles/hr2014121.
Article
CAS
PubMed
Google Scholar
Shiue I. Higher urinary heavy metal, arsenic, and phthalate concentrations in people with high blood pressure: US NHANES, 2009–2010. Blood Press. 2014;23(6):363–9 http://www.tandfonline.com/doi/full/10.3109/08037051.2014.925228.
Article
CAS
PubMed
Google Scholar
Shiue I. Higher urinary heavy metal, phthalate, and arsenic but not parabens concentrations in people with high blood pressure, U.S. NHANES, 2011-2012. Int J Environ Res Public Health. 2014;11(6):5989–99 http://www.mdpi.com/1660-4601/11/6/5989.
Article
PubMed
PubMed Central
CAS
Google Scholar
Harari F, Sallsten G, Christensson A, Petkovic M, Hedblad B, Forsgard N, et al. Blood lead levels and decreased kidney function in a population-based cohort. Am J Kidney Dis. 2018;72(3):381–9 https://linkinghub.elsevier.com/retrieve/pii/S0272638618305560.
Article
CAS
PubMed
Google Scholar
Ku E, Lee BJ, Wei J, Weir MR. Hypertension in CKD: Core Curriculum 2019. Am J Kidney Dis. 2019;74(1):120–31 https://linkinghub.elsevier.com/retrieve/pii/S0272638619300940.
Article
PubMed
Google Scholar
Nolan CV, Shaikh ZA. Lead nephrotoxicity and associated disorders: biochemical mechanisms. Toxicology. 1992;73(2):127–46 https://linkinghub.elsevier.com/retrieve/pii/0300483X9290097X.
Article
CAS
PubMed
Google Scholar
Schulz E, Gori T, Münzel T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res. 2011;34(6):665–73 http://www.nature.com/articles/hr201139.
Article
CAS
PubMed
Google Scholar
Ni Z, Hou S, Barton CH, Vaziri ND. Lead exposure raises superoxide and hydrogen peroxide in human endothelial and vascular smooth muscle cells. Kidney Int. 2004;66(6):2329–36 https://linkinghub.elsevier.com/retrieve/pii/S0085253815503384.
Article
CAS
PubMed
Google Scholar
Vaziri ND, Ding Y. Effect of lead on nitric oxide synthase expression in coronary endothelial cells. Hypertension. 2001;37(2):223–6 https://www.ahajournals.org/doi/10.1161/01.HYP.37.2.223.
Article
CAS
PubMed
Google Scholar
Bulka CM, Scannell Bryan M, Persky VW, Daviglus ML, Durazo-Arvizu RA, Parvez F, et al. Changes in blood pressure associated with lead, manganese, and selenium in a Bangladeshi cohort. Environ Pollut. 2019;248:28–35 https://linkinghub.elsevier.com/retrieve/pii/S0269749118341812.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang J, Liu M, Parvez F, Wang B, Wu F, Eunus M, et al. Association between arsenic exposure from drinking water and longitudinal change in blood pressure among HEALS cohort participants. Environ Health Perspect. 2015;123(8):806–12 https://ehp.niehs.nih.gov/doi/10.1289/ehp.1409004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Li B, Xi S, Zheng Q, Wang D, Sun G. Association of urinary monomethylated arsenic concentration and risk of hypertension: a cross-sectional study from arsenic contaminated areas in northwestern China. Environ Health. 2013;12(1):37 http://ehjournal.biomedcentral.com/articles/10.1186/1476-069X-12-37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mendez MA, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Cerón RH, Morales DV, et al. Chronic exposure to arsenic and markers of cardiometabolic risk: a cross-sectional study in Chihuahua, Mexico. Environ Health Perspectives. 2016;124(1):104–11 https://ehp.niehs.nih.gov/doi/10.1289/ehp.1408742.
Article
CAS
Google Scholar
Agusa T, Fujihara J, Takeshita H, Iwata H. Individual variations in inorganic arsenic metabolism associated with AS3MT genetic polymorphisms. Int J Mol Sci. 2011;12(4):2351–82 http://www.mdpi.com/1422-0067/12/4/2351.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weaver VM, Kim N-S, Jaar BG, Schwartz BS, Parsons PJ, Steuerwald AJ, et al. Associations of low-level urine cadmium with kidney function in lead workers. Occup Environ Med. 2011;68(4):250–6 https://oem.bmj.com/lookup/doi/10.1136/oem.2010.056077.
Article
CAS
PubMed
Google Scholar
Buser MC, Ingber SZ, Raines N, Fowler DA, Scinicariello F. Urinary and blood cadmium and lead and kidney function: NHANES 2007–2012. Int J Hyg Environ Health. 2016;219(3):261–7 https://linkinghub.elsevier.com/retrieve/pii/S1438463916000171.
Article
CAS
PubMed
PubMed Central
Google Scholar
Navas-Acien A, Guallar E, Silbergeld EK, Rothenberg SJ. Lead exposure and cardiovascular disease—a systematic review. Environ Health Perspect. 2007;115(3):472–82 https://ehp.niehs.nih.gov/doi/10.1289/ehp.9785.
Article
CAS
PubMed
Google Scholar
F. Combs, Jr. G. Biomarkers of selenium status. Nutrients. 2015 31;7(4):2209–36. http://www.mdpi.com/2072-6643/7/4/2209
Shimbo S, Zhang ZW, Moon CS, Watanabe T, Nakatsuka H, Matsuda-Inoguchi N, et al. Correlation between urine and blood concentrations, and dietary intake of cadmium and lead among women in the general population of Japan. Int Arch Occup Environ Health. 2000;73(3):163–70 http://link.springer.com/10.1007/s004200050023.
Article
CAS
PubMed
Google Scholar