Squire T, Buchanan G, Elsaleh H. Mission to Mars: radiation safety or radiation disaster? Space transit and Mars radiation exposure risks-the shielding effect of a graphene space suit and a storm shelter during space travel. Int J Radiat Oncol. 2019;103:E44.
Article
Google Scholar
Pecaut MJ, Haerich P, Zuccarelli CN, Smith AL, Zendejas ED, Nelson GA. Behavioral consequences of radiation exposure to simulated space radiation in the C57BL/6 mouse: open field, rotorod, and acoustic startle. Cogn Affect Behav Neurosci. 2002;2:329–40.
Article
PubMed
Google Scholar
Mishra B, Luderer U. Reproductive hazards of space travel in women and men. Nat Rev Endocrinol. 2019;15:713–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silva AM, Correia S, Casalta-Lopes JE, Mamede AC, Cavaco JE, Botelho MF, et al. The protective effect of regucalcin against radiation-induced damage in testicular cells. Life Sci. 2016;164:31–41.
Article
CAS
PubMed
Google Scholar
Khan S, Adhikari JS, Rizvi MA, Chaudhury NK. Radioprotective potential of melatonin against (6)(0)Co gamma-ray-induced testicular injury in male C57BL/6 mice. J Biomed Sci. 2015;22:61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ding J, Wang H, Wu ZB, Zhao J, Zhang S, Li W. Protection of murine spermatogenesis against ionizing radiation-induced testicular injury by a green tea polyphenol. Biol Reprod. 2015;92:6.
Article
PubMed
CAS
Google Scholar
Farhood B, Mortezaee K, Haghi-Aminjan H, Khanlarkhani N, Salehi E, Nashtaei MS, et al. A systematic review of radiation-induced testicular toxicities following radiotherapy for prostate cancer. J Cell Physiol. 2019;234:14828–37.
Article
CAS
Google Scholar
Li H, He Y, Zhang H, Miao G. Differential proteome and gene expression reveal response to carbon ion irradiation in pubertal mice testes. Toxicol Lett. 2014;225:433–44.
Article
CAS
PubMed
Google Scholar
Cancedda R, Liu Y, Ruggiu A, Tavella S, Biticchi R, Santucci D, et al. The Mice Drawer System (MDS) experiment and the space endurance record-breaking mice. PLoS One. 2012;7:e32243.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masini MA, Albi E, Barmo C, Bonfiglio T, Bruni L, Canesi L, et al. The impact of long-term exposure to space environment on adult mammalian organisms: a study on mouse thyroid and testis. PLoS One. 2012;7:e35418.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sen A, Hoffmann HM. Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis. Mol Cell Endocrinol. 2020;501:110655.
Article
CAS
PubMed
Google Scholar
Qin F, Cao H, Yuan H, Guo W, Pei H, Cao Y, et al. 1800 MHz radiofrequency fields inhibits testosterone production via CaMKI /RORalpha pathway. Reprod Toxicol. 2018;81:229–36.
Article
CAS
PubMed
Google Scholar
Qin F, Shen T, Cao H, Qian J, Zou D, Ye M, et al. CeO2NPs relieve radiofrequency radiation, improve testosterone synthesis, and clock gene expression in Leydig cells by enhancing antioxidation. Int J Nanomedicine. 2019;14:4601–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muller MH, Rodel F, Rub U, Korf HW. Irradiation with X-rays phase-advances the molecular clockwork in liver, adrenal gland and pancreas. Chronobiol Int. 2015;32:27–36.
Article
PubMed
CAS
Google Scholar
Oklejewicz M, Destici E, Tamanini F, Hut RA, Janssens R, van der Horst GT. Phase resetting of the mammalian circadian clock by DNA damage. Curr Biol. 2008;18:286–91.
Article
CAS
PubMed
Google Scholar
Forssell-Aronsson E, Quinlan RA. The Impact of circadian rhythms on medical imaging and radiotherapy regimes for the paediatric patient. Radiat Prot Dosimetry. 2017;173:16–20.
Article
CAS
PubMed
Google Scholar
Nanwen Z, Wu W, Lin J. The comparative anesthesia study of different chloral hydrate concentrations in two kinds of male mice. J Clin Anesthesiol. 2014;30(2):171–3 In Chinese.
Google Scholar
Joyce KL, Porcelli J, Cooke PS. Neonatal goitrogen treatment increases adult testis size and sperm production in the mouse. J Androl. 1993;14:448–55.
CAS
PubMed
Google Scholar
Qin F, Shen T, Li J, Qian J, Zhang J, Zhou G, et al. SF-1 mediates reproductive toxicity induced by Cerium oxide nanoparticles in male mice. Journal of Nanobiotechnology. 2019;17:41.
Article
PubMed
PubMed Central
Google Scholar
Nelson W, Tong YL, Lee JK, Halberg F. Methods for cosinor-rhythmometry. Chronobiologia. 1979;6:305–23.
CAS
PubMed
Google Scholar
Sciarra F, Franceschini E, Campolo F, Gianfrilli D, Pallotti F, Paoli D, et al. Disruption of Circadian Rhythms: A crucial factor in the etiology of infertility. Int J Mol Sci. 2020;21:3943.
Article
CAS
PubMed Central
Google Scholar
Yaw AM, Duong TV, Nguyen D, Hoffmann HM. Circadian rhythms in the mouse reproductive axis during the estrous cycle and pregnancy. J Neurosci Res. 2021;99:294–308.
Article
CAS
PubMed
Google Scholar
Qin F, Zhang J, Cao H, Guo W, Chen L, Shen O, et al. Circadian alterations of reproductive functional markers in male rats exposed to 1800 MHz radiofrequency field. Chronobiol Int. 2014;31:123–33.
Article
CAS
PubMed
Google Scholar
Tong Y, Guo H, Brewer JM, Lee H, Lehman MN, Bittman EL. Expression of haPer1 and haBmal1 in Syrian hamsters: heterogeneity of transcripts and oscillations in the periphery. J Biol Rhythms. 2004;19:1131–25.
Article
CAS
Google Scholar
Cucinotta FA, Manuel FK, Jones J, Iszard G, Murrey J, Djojonegro B, et al. Space radiation and cataracts in astronauts. Radiat Res. 2001;156:460–6.
Article
CAS
PubMed
Google Scholar
Naeimi RA, Talebpour AF, Khalatbary AR, Ghasemi A, Zargari M, Ghesemi M, et al. Atorvastatin mitigates testicular injuries induced by ionizing radiation in mice. Reprod Toxicol. 2017;72:115–21.
Article
CAS
PubMed
Google Scholar
Najafi M, Cheki M, Amini P, Javadi A, Shabeeb D, Eleojo MA. Evaluating the protective effect of resveratrol, Q10, and alpha-lipoic acid on radiation-induced mice spermatogenesis injury: A histopathological study. Int J Reprod Biomed. 2019;17:907–14.
CAS
PubMed
PubMed Central
Google Scholar
Li HY, Zhang H, Miao GY, Xie Y, Sun C, Di CX, et al. Simulated microgravity conditions and carbon ion irradiation induce spermatogenic cell apoptosis and sperm DNA damage. Biomed Environ Sci. 2013;26:726–34.
CAS
PubMed
Google Scholar
Withers HR, Hunter N, Barkley HT Jr, Reid BO. Radiation survival and regeneration characteristics of spermatogenic stem cells of mouse testis. Radiat Res. 1974;57:88–103.
Article
CAS
PubMed
Google Scholar
Rowley MJ, Leach DR, Warner GA, Heller CG. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59:665–78.
Article
CAS
PubMed
Google Scholar
Zhao Q, Mao A, Yan J, Si J, Zhou R, Gan L, et al. Zhang H. (56)Fe ion irradiation induced apoptosis through Nrf2 pathway in mouse testis. Life Sci. 2016;157:32–7.
Article
CAS
PubMed
Google Scholar
Jangiam W, Udomtanakunchai C, Reungpatthanaphong P, Tungjai M, Honikel L, Gordon CR, et al. Late effects of low-dose radiation on the bone marrow, lung, and testis collected from the same exposed BALB/cJ Mice. Dose Response. 2018;16:1559325818815031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mills NC, Means AR. Sorbitol dehydrogenase of rat testis: changes of activity during development, after hypophysectomy and following gonadotrophic hormone administration. Endocrinology. 1972;91:147–56.
Article
CAS
PubMed
Google Scholar
Peruquetti RL, Taboga SR, Azeredo-Oliveira MT. Expression of acid phosphatase in the seminiferous epithelium of vertebrates. Genet Mol Res. 2010;9:620–8.
Article
CAS
PubMed
Google Scholar
Zhang J, Ding X, Li Y, Xia Y, Nie J, Yi C, et al. Association of CLOCK gene variants with semen quality in idiopathic infertile Han-Chinese males. Reprod Biomed Online. 2012;25:536–42.
Article
CAS
PubMed
Google Scholar
Shen O, Ding X, Nie J, Xia Y, Wang X, Tong J, et al. Variants of the CLOCK gene affect the risk of idiopathic male infertility in the Han-Chinese population. Chronobiol Int. 2015;32:959–65.
PubMed
Google Scholar
Yang J, Zhang Z, Zhang Y, Zheng X, Lu Y, Tao D, et al. CLOCK interacts with RANBP9 and is involved in alternative splicing in spermatogenesis. Gene. 2018;642:199–204.
Article
CAS
PubMed
Google Scholar
Liang X, Cheng S, Jiang X, He X, Wang Y, Jiang Z, et al. The noncircadian function of the circadian Clock gene in the regulation of male fertility. J Biol Rhythms. 2013;28:208–17.
Article
PubMed
CAS
Google Scholar
Dolatshad H, Campbell EA, O'Hara L, Maywood ES, Hastings MH, Johnson MH. Developmental and reproductive performance in circadian mutant mice. Hum Reprod. 2006;21:68–79.
Article
CAS
PubMed
Google Scholar
Alvarez JD, Hansen A, Ord T, Bebas P, Chappell PE, Giebultowicz JM, et al. The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J Biol Rhythms. 2008;23:26–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koch CE, Leinweber B, Drengberg BC, Blaum C, Oster H. Interaction between circadian rhythms and stress. Neurobiol Stress. 2017;6:57–67.
Article
CAS
PubMed
Google Scholar
Kuintzle RC, Chow ES, Westby TN, Gvakharia BO, Giebultowicz JM, Hendrix DA. Circadian deep sequencing reveals stress-response genes that adopt robust rhythmic expression during aging. Nat Commun. 2017;8:14529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oster H. The interplay between stress, circadian clocks, and energy metabolism. J Endocrinol. 2020;247:R13–25.
Article
CAS
PubMed
Google Scholar
Ramsey KM, Bass J. Circadian clocks in fuel harvesting and energy homeostasis. Cold Spring Harb Symp Quant Biol. 2011;76:63–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jordan SD, Lamia KA. AMPK at the crossroads of circadian clocks and metabolism. Mol Cell Endocrinol. 2013;366:163–9.
Article
CAS
PubMed
Google Scholar
Cao H, Qin F, Liu X, Wang J, Cao Y, Tong J, et al. Circadian rhythmicity of antioxidant markers in rats exposed to 1.8 GHz radiofrequency fields. Int J Environ Res Public Health. 2015;12:2071–87.
Article
CAS
PubMed
PubMed Central
Google Scholar