Centre for Disease Control (2020) Precision health: improving health for each of us and all of us. https://www.cdc.gov/genomics/about/precision_med.htm. Accessed 1 May 2021
Gambir SS, Ge TJ, Vermesh O, Spitler R. Toward achieving precision health. [Miscellaneous Article]. Sci Transl Med. 2018;10:eaao3612.
Article
Google Scholar
Smith M, Hosking J, Woodward A, Witten K, MacMillan A, Field A, et al. Systematic literature review of built environment effects on physical activity and active transport - an update and new findings on health equity. Int J Behav Nutr Phys Act. 2017;14(1):158. https://doi.org/10.1186/s12966-017-0613-9.
Article
PubMed
PubMed Central
Google Scholar
Christine PJ, Auchincloss AH, Bertoni AG, Carnethon MR, Sanchez BN, Moore K, et al. Longitudinal associations between neighborhood physical and social environments and incident type 2 diabetes mellitus: the Multi-Ethnic Study of Atherosclerosis (MESA). JAMA Intern Med. 2015;175(8):1311–20. https://doi.org/10.1001/jamainternmed.2015.2691.
Article
PubMed
PubMed Central
Google Scholar
Mayne SL, Auchincloss AH, Michael YL. Impact of policy and built environment changes on obesity-related outcomes: a systematic review of naturally occurring experiments. Obes Rev. 2015;16(5):362–75. https://doi.org/10.1111/obr.12269.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tainio M, de Nazelle AJ, Götschi T, Kahlmeier S, Rojas-Rueda D, Nieuwenhuijsen MJ, et al. Can air pollution negate the health benefits of cycling and walking? Prev Med. 2016;87:233–6. https://doi.org/10.1016/j.ypmed.2016.02.002.
Article
PubMed
PubMed Central
Google Scholar
Zuurbier M, Hoek G, Oldenwening M, Lenters V, Meliefste K, van den Hazel P, et al. Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect. 2010;118(6):783–9. https://doi.org/10.1289/ehp.0901622.
Article
PubMed
PubMed Central
Google Scholar
de Hartog JJ, Boogaard H, Nijland H, Hoek G. Do the health benefits of cycling outweigh the risks? Environ Health Perspect. 2010;118(8):1109–16. https://doi.org/10.1289/ehp.0901747.
Article
PubMed Central
Google Scholar
Cutrufello PT, Smoliga JM, Rundell KW. Small things make a big difference: particulate matter and exercise. Sports Med. 2012;42(12):1041–58. https://doi.org/10.1007/BF03262311.
Article
PubMed
Google Scholar
Saelens BE, Handy SL. Built environment correlates of walking: a review. Med Sci Sports Exerc. 2008;40(7):S550–66. https://doi.org/10.1249/MSS.0b013e31817c67a4.
Article
PubMed
PubMed Central
Google Scholar
Michael YL, Carlson NE. Analysis of individual social-ecological mediators and moderators and their ability to wxplain effect of a randomized neighborhood walking intervention. Int J Behav Nutr Phys Act. 2009;6(1):49. https://doi.org/10.1186/1479-5868-6-49.
Article
PubMed
PubMed Central
Google Scholar
King AC, Toobert D, Ahn D, Resnicow K, Coday M, Riebe D, et al. Perceived environments as physical activity correlates and moderators of intervention in five studies. Am J Health Promot. 2006;21(1):24–35. https://doi.org/10.1177/089011710602100106.
Article
PubMed
Google Scholar
King AC, Marcus B, Ahn D, Dunn AL, Rejeski WJ, Sallis JF, et al. Identifying subgroups that succeed or fail with three levels of physical activity intervention: the Activity Counseling Trial. Health Psychol. 2006;25:336–47.
Article
Google Scholar
Kerr J, Norman GJ, Adams MA, Ryan S, Frank L, Sallis JF, et al. Do neighborhood environments moderate the effect of physical activity lifestyle interventions in adults? Health Place. 2010;16(5):903–8. https://doi.org/10.1016/j.healthplace.2010.05.002.
Article
PubMed
PubMed Central
Google Scholar
Adams MA, Hurley JC, Phillips CB, Todd M, Angadi SS, Berardi V, et al. Rationale, design, and baseline characteristics of WalkIT Arizona: a factorial randomized trial testing adaptive goals and financial reinforcement to increase walking across higher and lower walkable neighborhoods. Contemp Clin Trials. 2019;81:87–101. https://doi.org/10.1016/j.cct.2019.05.001.
Article
PubMed
PubMed Central
Google Scholar
Kang B, Moudon AV, Hurvitz PM, Saelens BE. Differences in behavior, time, location, and built environment between objectively measured utilitarian and recreational walking. Transp Res D Transp Env. 2017;57:185–94. https://doi.org/10.1016/j.trd.2017.09.026.
Article
Google Scholar
Saelens BE, Arteaga SS, Berrigan D, Ballard RM, Gorin AA, Powell-Wiley TM, et al. Accumulating Data to Optimally Predict Obesity Treatment (ADOPT) core measures: environmental domain. Obes. 2018;26(Suppl 2):S35–44.
Article
Google Scholar
Owen N, Humpel N, Leslie E, Bauman A, Sallis JF. Understanding environmental influences on walking; review and research agenda. Am J Prev Med. 2004;27(1):67–76. https://doi.org/10.1016/j.amepre.2004.03.006.
Article
PubMed
Google Scholar
van den Berg M, Wendel-Vos W, van Poppel M, Kemper H, van Mechelen W, Maas J. Health benefits of green spaces in the living environment: a systematic review of epidemiological studies. Urban For Urban Green. 2015;14(4):806–16. https://doi.org/10.1016/j.ufug.2015.07.008.
Article
Google Scholar
Kondo MC, Fluehr JM, McKeon T, Branas CC. Urban green space and its impact on human health. Int J Environ Res Public Health. 2018;15(3). https://doi.org/10.3390/ijerph15030445.
Markevych I, Schoierer J, Hartig T, Chudnovsky A, Hystad P, Dzhambov AM, et al. Exploring pathways linking greenspace to health: theoretical and methodological guidance. Environ Res. 2017;158:301–17. https://doi.org/10.1016/j.envres.2017.06.028.
Article
CAS
PubMed
Google Scholar
Fong KC, Hart JE, James P. A review of epidemiologic studies on greenness and health: updated literature through 2017. Curr Env Heal Rep. 2018;5(1):77–87. https://doi.org/10.1007/s40572-018-0179-y.
Article
CAS
Google Scholar
Kaczynski AT, Potwarka LR, Smale BJA, Havitz ME. Association of parkland proximity with neighborhood and park-based physical activity: variations by gender and age. Leis Sci. 2009;31(2):174–91. https://doi.org/10.1080/01490400802686045.
Article
Google Scholar
Prince SA, Kristjansson EA, Russell K, Billette J-M, Sawada M, Ali A, et al. A multilevel analysis of neighbourhood built and social environments and adult self-reported physical activity and body mass index in Ottawa, Canada. Int J Environ Res Public Health. 2011;8(10):3953–78. https://doi.org/10.3390/ijerph8103953.
Article
PubMed
PubMed Central
Google Scholar
Sanders T, Feng X, Fahey PP, Lonsdale C, Astell-Burt T. The influence of neighbourhood green space on children’s physical activity and screen time: findings from the longitudinal study of Australian children. Int J Behav Nutr Phys Act. 2015;12(1):126. https://doi.org/10.1186/s12966-015-0288-z.
Article
PubMed
PubMed Central
Google Scholar
Rainham DG, Bates CJ, Blanchard CM, Dummer TJ, Kirk SF, Shearer CL. Spatial classification of youth physical activity patterns. Am J Prev Med. 2012;42(5):e87–96. https://doi.org/10.1016/j.amepre.2012.02.011.
Article
PubMed
Google Scholar
Klinker CD, Schipperijn J, Kerr J, Ersbøll AK, Troelsen J. Context-specific outdoor time and physical activity among school-children across gender and age: using accelerometers and GPS to advance methods. Front Public Health. 2014;2. https://doi.org/10.3389/fpubh.2014.00020.
Branas CC, Cheney RA, MacDonald JM, Tam VW, Jackson TD, Ten Have TR. A difference-in-differences analysis of health, safety, and greening vacant urban space. Am J Epidemiol. 2011;174(11):1296–306. https://doi.org/10.1093/aje/kwr273.
Article
PubMed
PubMed Central
Google Scholar
Ward Thompson C, Roe J, Aspinall P. Woodland improvements in deprived urban communities: what impact do they have on people’s activities and quality of life? Landsc Urban Plan. 2013;118:79–89. https://doi.org/10.1016/j.landurbplan.2013.02.001.
Article
Google Scholar
Gubbels JS, Kremers SPJ, Droomers M, Hoefnagels C, Stronks K, Hosman C, et al. The impact of greenery on physical activity and mental health of adolescent and adult residents of deprived neighborhoods: a longitudinal study. Health Place. 2016;40:153–60. https://doi.org/10.1016/j.healthplace.2016.06.002.
Article
PubMed
Google Scholar
Reed K, Wood C, Barton J, Pretty JN, Cohen D, Sandercock GRH. A repeated measures experiment of green exercise to improve self-esteem in UK school children. PLoS One. 2013;8(7):e69176. https://doi.org/10.1371/journal.pone.0069176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pretty J, Peacock J, Sellens M, Griffin M. The mental and physical health outcomes of green exercise. Int J Environ Health Res. 2005;15(5):319–37. https://doi.org/10.1080/09603120500155963.
Article
PubMed
Google Scholar
MacIntyre C. Nieuwenhuijsen M. Collier M. Gritzka S. and Warrington G. TEG (2019) Nature-based interventions cities: a look ahead. In: Donnelly TE. AAM (ed) Phys. Act. Nat. Settings. Routledge, pp 335–348
Almanza E, Jerrett M, Dunton G, Seto E, Pentz MA. A study of community design, greenness, and physical activity in children using satellite, GPS and accelerometer data. Health Place. 2012;18(1):46–54. https://doi.org/10.1016/j.healthplace.2011.09.003.
Article
PubMed
Google Scholar
Grigsby-Toussaint DS, Chi SH, Fiese BH, Group SKPW. Where they live, how they play: neighborhood greenness and outdoor physical activity among preschoolers. Int J Health Geogr. 2011;10(1):66. https://doi.org/10.1186/1476-072X-10-66.
Article
Google Scholar
Koeneman MW, Chinapaw MJM, Hopman-Rock M, MAV. Determinants of physical activity and exercise in healthy older adults: a systematic review. Int J Behav Nutr Phys Act. 2011;8(1):142. https://doi.org/10.1186/1479-5868-8-142.
Article
PubMed
PubMed Central
Google Scholar
Nordbø ECA, Raanaas RK, Nordh H, Aamodt G. Neighborhood green spaces, facilities and population density as predictors of activity participation among 8-year-olds: a cross-sectional GIS study based on the Norwegian mother and child cohort study. BMC Public Health. 2019;19(1):1426. https://doi.org/10.1186/s12889-019-7795-9.
Article
PubMed
PubMed Central
Google Scholar
Chow HW, Wu DR. Outdoor fitness equipment usage behaviors in natural settings. Int J Environ Res Public Health. 2019;16(3). https://doi.org/10.3390/ijerph16030391.
Hunter RF, Christian H, Veitch J, Astell-Burt T, Hipp JA, Schipperijn J. The impact of interventions to promote physical activity in urban green space: a systematic review and recommendations for future research. Soc Sci Med. 2015;124:246–56. https://doi.org/10.1016/j.socscimed.2014.11.051.
Article
PubMed
Google Scholar
Wehner W, Gnauk T, Wiedensohler A, BB. Particle number size distributions in a street canyon and their transformation into the urban-air background: measurements and a simple model study. Atmos Environ. 2002;36(13):2215–23. https://doi.org/10.1016/S1352-2310(02)00174-7.
Article
CAS
Google Scholar
Rodríguez L, Oueslati W, MCD-C. Air pollution and urban structure linkages: evidence from European cities. Renew Sust Energ Rev. 2016;53:1–9. https://doi.org/10.1016/j.rser.2015.07.190.
Article
CAS
Google Scholar
Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, et al. Woodsmoke health effects: a review. Inhal Toxicol. 2007;19(1):67–106. https://doi.org/10.1080/08958370600985875.
Article
CAS
PubMed
Google Scholar
Bauer SE, Tsigaridis K, Miller R. Significant atmospheric aerosol pollution caused by world food cultivation. Geophys Res Lett. 2016;43(10):5394–400. https://doi.org/10.1002/2016GL068354.
Article
Google Scholar
Semmens EO, Noonan CW, Allen RW, Weiler EC, Ward TJ. Indoor particulate matter in rural, wood stove heated homes. Environ Res. 2015;138:93–100. https://doi.org/10.1016/j.envres.2015.02.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu H, Cheng J, Gordon SP, An R, Yu M, Chen X, et al. Impact of air pollution on sedentary behavior: a cohort study of freshmen at a university in Beijing, China. Int J Environ Res Public Health. 2018;15(12):2811. https://doi.org/10.3390/ijerph15122811.
Article
PubMed Central
Google Scholar
Wen XJ, Balluz L, Mokdad A. Association between media alerts of air quality index and change of outdoor activity among adult asthma in six states, BRFSS, 2005. J Community Health. 2009;34(1):40–6. https://doi.org/10.1007/s10900-008-9126-4.
Article
PubMed
Google Scholar
Roberts JD, Voss JD, Knight B. The association of ambient air pollution and physical inactivity in the United States. PLoS ONE. 2014;9:e90143.
Article
Google Scholar
Hu L, Zhu L, Xu Y, Lyu J, Imm K, Yang L. Relationship between air quality and outdoor exercise behavior in China: a Novel Mobile-Based Study. Int J Behav Med. 2017;24(4):520–7. https://doi.org/10.1007/s12529-017-9647-2.
Article
PubMed
Google Scholar
An R, Xiang X. Ambient fine particulate matter air pollution and leisure-time physical inactivity among US adults. Public Health. 2015;129(12):1637–44. https://doi.org/10.1016/j.puhe.2015.07.017.
Article
CAS
PubMed
Google Scholar
An R, Zhang S, Ji M, Guan C. Impact of ambient air pollution on physical activity among adults: a systematic review and meta-analysis. Perspect Public Health. 2018;138(2):111–21. https://doi.org/10.1177/1757913917726567.
Article
PubMed
Google Scholar
Chekroud SR, Gueorguieva R, Zheutlin AB, Paulus M, Krumholz HM, Krystal JH, et al. Association between physical exercise and mental health in 1.2 million individuals in the USA between 2011 and 2015: a cross-sectional study. Lancet Psychiatry. 2018;5(9):739–46. https://doi.org/10.1016/S2215-0366(18)30227-X.
Article
PubMed
Google Scholar
Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. Cmaj. 2006;174(6):801–9. https://doi.org/10.1503/cmaj.051351.
Article
PubMed
PubMed Central
Google Scholar
McConnell R, Berhane K, Gilliland F, London SJ, Islam T, Gauderman WJ, et al. Asthma in exercising children exposed to ozone: a cohort study. Lancet. 2002;359(9304):386–91. https://doi.org/10.1016/S0140-6736(02)07597-9.
Article
CAS
PubMed
Google Scholar
Carlsten C, Rider CF. Traffic-related air pollution and allergic disease: an update in the context of global urbanization. Curr Opin Allergy Clin Immunol. 2017;17(2):85–9. https://doi.org/10.1097/ACI.0000000000000351.
Article
PubMed
Google Scholar
Giles LV, Barn P, Kunzli N, et al. From good intentions to proven interventions: effectiveness of actions to reduce the health impacts of air pollution. Environ Health Perspect. 2011;119(1):29–36. https://doi.org/10.1289/ehp.1002246.
Article
CAS
PubMed
Google Scholar
Giles LV, Brandenburg JP, Carlsten C, Koehle MS. Physiological responses to diesel exhaust exposure are modified by cycling intensity. Med Sci Sports Exerc. 2014;46(10):1999–2006. https://doi.org/10.1249/MSS.0000000000000309.
Article
CAS
PubMed
Google Scholar
Nichols AW. Heat-related illness in sports and exercise. Curr Rev Musculoskelet Med. 2014;7(4):355–65. https://doi.org/10.1007/s12178-014-9240-0.
Article
PubMed
PubMed Central
Google Scholar
Zivin JG, Neidell M. Temperature and the allocation of time: implications for climate change. J Labor Econ. 2014;32(1):1–26. https://doi.org/10.1086/671766.
Article
Google Scholar
Wallace JP, Wiedenman E, McDermott RJ. Physical activity and climate change: clear and present danger? Heal Behav Policy Rev. 2019;6(5):534–45. https://doi.org/10.14485/HBPR.6.5.11.
Article
Google Scholar
Kovats RS, Hajat S. Heat stress and public health: a critical review. Annu Rev Public Health. 2008;29(1):41–55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843.
Article
PubMed
Google Scholar
Canoui-poitrine F, Cadot E, Spira A. Excess deaths during the August 2003 heat wave. Epidemiol Public Heal. 2006;54:127–35.
CAS
Google Scholar
Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK. Climate science special report: fourth National Climate Assessment. US Glob Chang Res Progr. 2017. https://doi.org/10.7930/J0J964J6.
Li Y, Wang Y, Ma L. An association study of CASQ1 gene polymorphisms and heat stroke. Genom Proteomics Bioinform. 2014;12(3):127–32. https://doi.org/10.1016/j.gpb.2014.03.004.
Article
CAS
Google Scholar
Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–90. https://doi.org/10.1249/mss.0b013e31802ca597.
Article
PubMed
Google Scholar
Ledrans M, Pirard P, Tillaut H, et al. La vague de chaleur d’août 2003 : que s’est-il passé ? : Pathologies liées à la chaleur = The heat wave in France in august 2003: what happened? Rev Prat. 2004.
Fouillet A, Rey G, Wagner V, Laaidi K, Empereur-Bissonnet P, le Tertre A, et al. Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. Int J Epidemiol. 2008;37(2):309–17. https://doi.org/10.1093/ije/dym253.
Article
CAS
PubMed
Google Scholar
Bosch X. France makes heatwave plans to protect elderly people. Lancet. 2004;363(9422):1708. https://doi.org/10.1016/S0140-6736(04)16292-2.
Article
PubMed
Google Scholar
Sallis JF, King AC, Sirard JR, Albright CL. Perceived environmental predictors of physical activity over 6 months in adults: activity counseling trial. Health Psychol. 2007;26(6):701–9. https://doi.org/10.1037/0278-6133.26.6.701.
Article
PubMed
Google Scholar
Zenk SN, Wilbur J, Wang E, McDevitt J, Oh A, Block R, et al. Neighborhood environment and adherence to a walking intervention in African American women. Health Educ Behav. 2009;36(1):167–81. https://doi.org/10.1177/1090198108321249.
Article
PubMed
Google Scholar
Merom D, Bauman A, Phongsavan P, Cerin E, Kassis M, Brown W, et al. Can a motivational intervention overcome an unsupportive environment for walking--findings from the step-by-step study. Ann Behav Med. 2009;38(2):137–46. https://doi.org/10.1007/s12160-009-9138-z.
Article
PubMed
Google Scholar
Gebel K, Bauman AE, Reger-Nash B, Leyden KM. Does the environment moderate the impact of a mass media campaign to promote walking? Am J Health Promot. 2011;26(1):45–8. https://doi.org/10.4278/ajhp.081104-ARB-269.
Article
PubMed
Google Scholar
Lee RE, Mama SK, Medina AV, Ho A, Adamus HJ. Neighborhood factors influence physical activity among African American and Hispanic or Latina women. Health Place. 2012;18(1):63–70. https://doi.org/10.1016/j.healthplace.2011.08.013.
Article
PubMed
PubMed Central
Google Scholar
Barnes R, Giles-Corti B, Bauman A, Rosenberg M, Bull FC, Leavy JE. Does neighbourhood walkability moderate the effects of mass media communication strategies to promote regular physical activity? Ann Behav Med. 2013;45(Suppl 1):S86–94.
Article
Google Scholar
King AC, Salvo D, Banda JA, Ahn DK, Chapman JE, Gill TM, et al. Preserving older adults’ routine outdoor activities in contrasting neighborhood environments through a physical activity intervention. Prev Med. 2017;96:87–93. https://doi.org/10.1016/j.ypmed.2016.12.049.
Article
PubMed
Google Scholar
Jilcott Pitts SB, Keyserling TC, Johnston LF, Evenson KR, McGuirt JT, Gizlice Z, et al. Examining the association between intervention-related changes in diet, physical activity, and weight as moderated by the food and physical activity environments among rural, southern adults. J Acad Nutr Diet. 2017;117(10):1618–27. https://doi.org/10.1016/j.jand.2017.04.012.
Article
PubMed
PubMed Central
Google Scholar
Perez LG, Kerr J, Sallis JF, Slymen D, McKenzie TL, Elder JP, et al. Perceived neighborhood environmental factors that maximize the effectiveness of a multilevel intervention promoting physical activity among Latinas. Am J Health Promot. 2018;32(2):334–43. https://doi.org/10.1177/0890117117742999.
Article
PubMed
Google Scholar
Lo BK, Graham ML, Folta SC, Paul L, Strogatz D, Nelson M, et al. Examining the associations between walk score, perceived built environment, and physical activity behaviors among women participating in a community-randomized lifestyle change intervention trial: strong hearts, healthy communities. Int J Environ Res Public Health. 2019;16(5). https://doi.org/10.3390/ijerph16050849.