ATSDR. The ATSDR (Agency for Toxic Substances and Disease Registry Division of Toxicology and Human Health Sciences) 2015 Substance priority list. Atlanta. 2015. https://www.atsdr.cdc.gov/spl/. Accessed 22 Apr 2019.
NRC, National Research Council. Toxicological effects of methylmercury. Washington, DC: National Academy Press; 2000.
Google Scholar
Lyall K, Schmidt RJ, Hertz-Picciotto I. Maternal lifestyle and environmental risk factors for autism spectrum disorders. Int J Epidemiol. 2014;43(2):443–64.
Article
PubMed
PubMed Central
Google Scholar
Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, et al. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol. 1997;19(6):417–28.
Article
CAS
PubMed
Google Scholar
Myers GJ, Davidson PW, Cox C, Shamlaye CF, Palumbo D, Cernichiari E, et al. Prenatal methylmercury exposure from ocean fish consumption in the Seychelles child development study. Lancet. 2003;361(9370):1686–92.
Article
CAS
PubMed
Google Scholar
Guan H, Piao F-Y, Li X-W, Li Q-J, Xu L, Yokoyama K. Maternal and fetal exposure to four carcinogenic environmental metals. Biomed Environ Sci. 2010;23(6):458–65.
Article
PubMed
Google Scholar
Bellinger DC. Teratogen update: lead and pregnancy. Birth Defects Res A Clin Mol Teratol. 2005;73(6):409–20.
Article
CAS
PubMed
Google Scholar
Dzwilewski KL, Schantz SL. Prenatal chemical exposures and child language development. J Commun Disord. 2015;57:41–65.
Article
PubMed
PubMed Central
Google Scholar
Pocock SJ, Smith M, Baghurst P. Environmental lead and children’s intelligence: a systematic review of the epidemiological evidence. BMJ (Clinical research ed). 1994;309(6963):1189–97.
Article
CAS
Google Scholar
Hong SB, Im MH, Kim JW, Park EJ, Shin MS, Kim BN, et al. Environmental lead exposure and attention deficit/hyperactivity disorder symptom domains in a community sample of south Korean school-age children. Environ Health Perspect. 2015;123(3):271–6.
Article
CAS
PubMed
Google Scholar
Tekin D, Kayaalti Z, Aliyev V, Soylemezoglu T. The effects of metallothionein 2A polymorphism on placental cadmium accumulation: is metallothionein a modifiying factor in transfer of micronutrients to the fetus? J Appl Toxicol. 2012;32(4):270–5.
Article
CAS
PubMed
Google Scholar
Salpietro CD, Gangemi S, Minciuollo PL, Briuglia S, Merlino MV, Stelitano A, et al. Cadmium concentration in maternal and cord blood and infant birth weight: a study on healthy non-smoking women. J Perinat Med. 2002;30(5):395–9.
Article
CAS
PubMed
Google Scholar
Gilbert-Diamond D, Emond JA, Baker ER, Korrick SA, Karagas MR. Relation between in utero arsenic exposure and birth outcomes in a cohort of mothers and their newborns from New Hampshire. Environ Health Perspect. 2016;124(8):1299–307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vahter M. Health effects of early life exposure to arsenic. Basic Clin Pharmacol Toxicol. 2008;102(2):204–11.
Article
CAS
PubMed
Google Scholar
Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, et al. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect. 2006;114(8):1293–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liaw J, Marshall G, Yuan Y, Ferreccio C, Steinmaus C, Smith AH. Increased childhood liver cancer mortality and arsenic in drinking water in northern Chile. Cancer Epidemiol Biomark Prev. 2008;17(8):1982–7.
Article
CAS
Google Scholar
Chan S, Gerson B, Subramaniam S. The role of copper, molybdenum, selenium, and zinc in nutrition and health. Clin Lab Med. 1998;18(4):673–85.
Article
CAS
PubMed
Google Scholar
Burguera M, Burguera JL, Rondon C, Garcia MI, de Pena YP, Villasmil LM. Determination of bismuth in biological tissues by electrothermal atomic absorption spectrometry using platinum and tartaric acid as chemical modifier. J Anal At Spectrom. 2001;16(10):1190–5.
Article
CAS
Google Scholar
Dolara P. Occurrence, exposure, effects, recommended intake and possible dietary use of selected trace compounds (aluminium, bismuth, cobalt, gold, lithium, nickel, silver). Int J Food Sci Nutr. 2014;65(8):911–24.
Article
CAS
PubMed
Google Scholar
Sundar S, Chakravarty J. Antimony toxicity. Int J Environ Res Public Health. 2010;7(12):4267.
Article
CAS
PubMed
PubMed Central
Google Scholar
Volonakis G, Filip MR, Haghighirad AA, Sakai N, Wenger B, Snaith HJ, et al. Lead-free halide double perovskites via heterovalent substitution of noble metals. J Phys Chem Lett. 2016;7(7):1254–9.
Article
CAS
PubMed
Google Scholar
Gardella C. Lead exposure in pregnancy: a review of the literature and argument for routine prenatal screening. Obstet Gynecol Surv. 2001;56(4):231–8.
Article
CAS
PubMed
Google Scholar
Schoeters G, Den Hond E, Zuurbier M, Naginiene R, van den Hazel P, Stilianakis N, et al. Cadmium and children: exposure and health effects. Acta Paediatr Suppl. 2006;95(453):50–4.
Article
PubMed
Google Scholar
Holmes P, James KA, Levy LS. Is low-level environmental mercury exposure of concern to human health? Sci Total Environ. 2009;408(2):171–82.
Article
CAS
PubMed
Google Scholar
Reis MF, Sampaio C, Brantes A, Aniceto P, Melim M, Cardoso L, et al. Human exposure to heavy metals in the vicinity of Portuguese solid waste incinerators--part 2: biomonitoring of lead in maternal and umbilical cord blood. Int J Hyg Environ Health. 2007;210(3–4):447–54.
Article
CAS
PubMed
Google Scholar
Rollin HB, Rudge CVC, Thomassen Y, Mathee A, Odland JO. Levels of toxic and essential metals in maternal and umbilical cord blood from selected areas of South Africa-results of a pilot study. J Environ Monit. 2009;11(3):618–27.
Article
PubMed
Google Scholar
Jones EA, Wright JM, Rice G, Buckley BT, Magsumbol MS, Barr DB, et al. Metal exposures in an inner-city neonatal population. Environ Int. 2010;36(7):649–54.
Article
CAS
PubMed
Google Scholar
Nakai K, Suzuki K, Oka T, Murata K, Sakamoto M, Okamura K, et al. The Tohoku study of child development: a cohort study of effects of perinatal exposures to methylmercury and environmentally persistent organic pollutants on neurobehavioral development in Japanese children. Tohoku J Exp Med. 2004;202(3):227–37.
Article
PubMed
Google Scholar
Tatsuta N, Kurokawa N, Nakai K, Suzuki K, Iwai-Shimada M, Murata K, et al. Effects of intrauterine exposures to polychlorinated biphenyls, methylmercury, and lead on birth weight in Japanese male and female newborns. Environ Health Prev Med. 2017;22(1):39.
Article
PubMed
PubMed Central
Google Scholar
Suzuki K, Nakai K, Sugawara T, Nakamura T, Ohba T, Shimada M, et al. Neurobehavioral effects of prenatal exposure to methylmercury and PCBs, and seafood intake: neonatal behavioral assessment scale results of Tohoku study of child development. Environ Res. 2010;110(7):699–704.
Article
CAS
PubMed
Google Scholar
Tatsuta N, Nakai K, Suzuki K, Kurokawa N, Shimada M, Yaginuma K, et al. Construction of maladaptive behavior scale [in Japanese]. Jap J Hyg. 2010;65(4):516–23.
Article
PubMed
Google Scholar
Tatsuta N, Nakai K, Murata K, Suzuki K, Iwai-Shimada M, Yaginuma-Sakurai K, et al. Prenatal exposures to environmental chemicals and birth order as risk factors for child behavior problems. Environ Res. 2012;114:47–52.
Article
CAS
PubMed
Google Scholar
Acharya G, Sonesson SE, Flo K, Räsänen J, Odibo A. Hemodynamic aspects of normal human feto-placental (umbilical) circulation. Acta Obstet Gynecol Scand. 2016;95(6):672–82. https://doi.org/10.1111/aogs.12919.
Article
PubMed
Google Scholar
Ministry of the Environment J. Mercury analysis manual. Tokyo: Ministry of the Environment, Japan; 2004.
Google Scholar
Iwai-Shimada M, Satoh H, Nakai K, Tatsuta N, Murata K, Akagi H. Methylmercury in the breast milk of Japanese mothers and lactational exposure of their infants. Chemosphere. 2015;126:67–72.
Article
CAS
PubMed
Google Scholar
Akagi H, Castillo ES, Corles-Maramba N, Francisco-Rivera AT, Timbang TD. Health assessment for mercury exposure among schoolchildren residing near a gold processing and refining plant in Apokon, Tagum, Davao del Norte. Philippines Sci Total Environ. 2000;259(1–3):31–43.
Article
CAS
PubMed
Google Scholar
Currie LA. Detection and quantification limits: origins and historical overview. Anal Chim Acta. 1999;391(2):127–34.
Article
CAS
Google Scholar
Murata K, Dakeishi M, Shimada M, Satoh H. Assessment of intrauterine methylmercury exposure affecting child development: messages from the newborn. Tohoku J Exp Med. 2007;213(3):187–202.
Article
CAS
PubMed
Google Scholar
Caserta D, Graziano A, Lo Monte G, Bordi G, Moscarini M. Heavy metals and placental fetal-maternal barrier: a mini-review on the major concerns. Eur Rev Med Pharmacol Sci. 2013;17(16):2198–206.
CAS
PubMed
Google Scholar
Goyer RA. Transplacental transfer of lead and cadmium. In: Goyer RA, Cherian MG, editors. Toxicology of metals: biochemical aspects. Berlin, Heidelberg: Springer Berlin Heidelberg; 1995. p. 1–17.
Chapter
Google Scholar
Aschner M, Aschner JL. Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neurosci Biobehav Rev. 1990;14(2):169–76.
Article
CAS
PubMed
Google Scholar
Sakamoto M, Chan HM, Domingo JL, Koriyama C, Murata K. Placental transfer and levels of mercury, selenium, vitamin E, and docosahexaenoic acid in maternal and umbilical cord blood. Environ Int. 2018;111:309–15.
Article
CAS
PubMed
Google Scholar
Sakamoto M, Murata K, Kubota M, Nakai K, Satoh H. Mercury and heavy metal profiles of maternal and umbilical cord RBCs in Japanese population. Ecotoxicol Environ Saf. 2010;73(1):1–6.
Article
CAS
PubMed
Google Scholar
Stern AH, Smith AE. An assessment of the cord blood:maternal blood methylmercury ratio: implications for risk assessment. Environ Health Perspect. 2003;111(12):1465–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
WHO. Methylmercury. Geneva: World Health Organization; 1990.
Google Scholar
Nordberg M, Nordberg GF. Toxicological aspects of metallothionein. Cell Mol Biol. 2000;46(2):451–63.
CAS
PubMed
Google Scholar
Espart A, Artime S, Tort-Nasarre G, Yara-Varon E. Cadmium exposure during pregnancy and lactation: materno-fetal and newborn repercussions of Cd (ii), and Cd-metallothionein complexes. Metallomics. 2018;10(10):1359–67.
Article
CAS
PubMed
Google Scholar
Goyer RA, Cherian MG. Role of metallothionein in human placenta and rats exposed to cadmium. IARC Sci Publ. 1992;118:239–47.
CAS
Google Scholar
Gebel T, Claussen K, Dunkelberg H. Human biomonitoring of antimony. Int Arch Occup Environ Health. 1998;71(3):221–4.
Article
CAS
PubMed
Google Scholar
Hinwood AL, Stasinska A, Callan AC, Heyworth J, Ramalingam M, Boyce M, et al. Maternal exposure to alkali, alkali earth, transition and other metals: concentrations and predictors of exposure. Environ Pollut. 2015;204:256–63.
Article
CAS
PubMed
Google Scholar
Fonturbel FE, Barbieri E, Herbas C, Barbieri FL, Gardon J. Indoor metallic pollution related to mining activity in the Bolivian Altiplano. Environ Pollut. 2011;159(10):2870–5.
Article
CAS
PubMed
Google Scholar
Goix S, Point D, Oliva P, Polve M, Duprey JL, Mazurek H, et al. Influence of source distribution and geochemical composition of aerosols on children exposure in the large polymetallic mining region of the Bolivian Altiplano. Sci Total Environ. 2011;412–413:170–84.
Article
PubMed
Google Scholar
Yoshinaga J, Yamasaki K, Yonemura A, Ishibashi Y, Kaido T, Mizuno K, et al. Lead and other elements in house dust of Japanese residences--source of lead and health risks due to metal exposure. Environ Pollut. 2014;189:223–8.
Article
CAS
PubMed
Google Scholar
Akerstrom M, Barregard L, Lundh T, Sallsten G. The relationship between cadmium in kidney and cadmium in urine and blood in an environmentally exposed population. Toxicol Appl Pharmacol. 2013;268(3):286–93.
Article
CAS
PubMed
Google Scholar
WHO. Cadmium. Geneva: World Health Organization; 1992.
Google Scholar
Baranowska I. Lead and cadmium in human placentas and maternal and neonatal blood (in a heavily polluted area) measured by graphite furnace atomic absorption spectrometry. Occup Environ Med. 1995;52(4):229–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuchiya H, Mitani K, Kodama K, Nakata T. Placental transfer of heavy metals in normal pregnant Japanese women. Arch Environ Health. 1984;39(1):11–7.
Article
CAS
PubMed
Google Scholar
Al-Saleh I, Shinwari N, Mashhour A, Rabah A. Birth outcome measures and maternal exposure to heavy metals (lead, cadmium and mercury) in Saudi Arabian population. Int J Hyg Environ Health. 2014;217(2–3):205–18.
Article
CAS
PubMed
Google Scholar
García-Esquinas E, Pérez-Gómez B, Fernández-Navarro P, Fernández MA, de Paz C, Pérez-Meixeira AM, et al. Lead, mercury and cadmium in umbilical cord blood and its association with parental epidemiological variables and birth factors. BMC Public Health. 2013;13(1):841.
Article
PubMed
PubMed Central
Google Scholar
Esteban-Vasallo MD, Aragones N, Pollan M, Lopez-Abente G, Perez-Gomez B. Mercury, cadmium, and lead levels in human placenta: a systematic review. Environ Health Perspect. 2012;120(10):1369–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
CDC. Fourth National Report on Human Exposure to Environmental Chemicals: Centers for Disease Control and Prevention, USA. 2017. https://www.cdc.gov/exposurereport/pdf/FourthReport_UpdatedTables_Volume1_Jan2017.pdf. Accessed 22 Apr 2019.
Thomas S, Arbuckle TE, Fisher M, Fraser WD, Ettinger A, King W. Metals exposure and risk of small-for-gestational age birth in a Canadian birth cohort: the MIREC study. Environ Res. 2015;140:430–9.
Article
CAS
PubMed
Google Scholar
Huang SH, Weng KP, Lin CC, Wang CC, Lee CT, Ger LP, et al. Maternal and umbilical cord blood levels of mercury, manganese, iron, and copper in southern Taiwan: a cross-sectional study. J Chin Med Assoc. 2017;80(7):442–51.
Article
PubMed
Google Scholar
Li S, Xu J, Liu Z, Yan CH. The non-linear association between low-level lead exposure and maternal stress among pregnant women. Neurotoxicology. 2017;59:191–6.
Article
CAS
PubMed
Google Scholar
Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, et al. Toxicological status of children with autism vs. neurotypical children and the association with autism severity. Biol Trace Elem Res. 2013;151(2):171–80.
Article
CAS
PubMed
Google Scholar
Tsuji JS, Garry MR, Perez V, Chang ET. Low-level arsenic exposure and developmental neurotoxicity in children: a systematic review and risk assessment. Toxicology. 2015;337:91–107.
Article
CAS
PubMed
Google Scholar
Parajuli RP, Umezaki M, Fujiwara T, Watanabe C. Association of cord blood levels of lead, arsenic, and zinc and home environment with children neurodevelopment at 36 months living in Chitwan Valley, Nepal. PLoS One. 2015;10(3):e0120992.
Article
PubMed
PubMed Central
Google Scholar
Meltzer HM, Maage A, Ydersbond TA, Haug E, Glattre E, Holm H. Fish arsenic may influence human blood arsenic, selenium, and T4:T3 ratio. Biol Trace Elem Res. 2002;90(1–3):83–98.
Article
CAS
PubMed
Google Scholar
Sakurai T, Kojima C, Ochiai M, Ohta T, Fujiwara K. Evaluation of in vivo acute immunotoxicity of a major organic arsenic compound arsenobetaine in seafood. Int Immunopharmacol. 2004;4(2):179–84.
Article
CAS
PubMed
Google Scholar
NRC. Arsenic in drinking water. Washington, DC: National Research Council; 1999.
Google Scholar
Hughes MF. Biomarkers of exposure: a case study with inorganic arsenic. Environ Health Perspect. 2006;114(11):1790–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lavolpe M, Greco LL, Kesselman D, Rodriguez E. Differential toxicity of copper, zinc, and lead during the embryonic development of Chasmagnathus granulatus (Brachyura, Varunidae). Environ Toxicol Chem. 2004;23(4):960–7.
Article
CAS
PubMed
Google Scholar
Simons TJ. Cellular interactions between lead and calcium. Br Med Bull. 1986;42(4):431–4.
Article
CAS
PubMed
Google Scholar
Ettinger AS, Hu H, Hernandez-Avila M. Dietary calcium supplementation to lower blood lead levels in pregnancy and lactation. J Nutr Biochem. 2007;18(3):172–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
McElroy JA, Bryda EC, McKay SD, Schnabel RD, Taylor JF. Genetic variation at a metallothionein 2A promoter single-nucleotide polymorphism in white and black females in Midwestern United States. J Toxicol Environ Health A. 2010;73(19):1283–7.
Article
CAS
PubMed
Google Scholar
WHO. Zinc. World Health Organization, Environmental Health Criteria 221, 2001.
Donald GB. Copper. J Toxicol Clin Toxicol. 1999;2:217–30.
Google Scholar
Willett W. Nutritional epidemiology. Oxford University Press, 2012.
Lee S, Shin M, Hong YC, Kim JH. Temporal variability of blood lead, mercury, and cadmium levels in elderly panel study (2008-2014). Int J Hyg Environ Health. 2017;220:407–14.
Article
CAS
PubMed
Google Scholar
Nomura K, Karita K, Araki A, Nishioka E, Muto G, Iwai-Shimada M, et al. For making a declaration of countermeasures against the falling birth rate from the Japanese Society for Hygiene: summary of discussion in the working group on academic research strategy against an aging society with low birth rate. Environ Health Prev Med. 2019;24(1):14.
Article
PubMed
PubMed Central
Google Scholar