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Abstract

Objectives Isoliquiritigenin is a chalcone derivative with

potential in cancer chemoprevention. Although tumor

necrosis factor-related apoptosis-inducing ligand (TRAIL)

is a promising anti-cancer agent, some cancer cells are

resistant to TRAIL treatment. Current studies have tried to

overcome TRAIL-resistant cancer cells. Here, we show for

the first time that isoliquiritigenin overcomes TRAIL

resistance in colon cancer HT29 cells.

Methods HT29 cells were treated with isoliquiritigenin

and/or TRAIL, and apoptosis induction was detected by

flow cytometry and fluorescence microscopy. Protein

expression relating to the TRAIL pathway was analyzed by

Western blotting.

Results A single treatment with isoliquiritigenin scarcely

induced apoptosis in HT29 cells. Combined treatment with

suboptimal concentrations of isoliquiritigenin and TRAIL

markedly induced apoptosis, however. The effect was

blocked by a pan-caspase inhibitor and a caspase-3, 8, 9, or

10 inhibitor, suggesting that the combination facilitates

caspase-dependent apoptosis. Furthermore, the apoptosis

induced by isoliquiritigenin and TRAIL was blocked by a

dominant negative form of the TRAIL receptor. This result

indicates that the combined effect is caused by specific

interaction between TRAIL and its receptors. Isoliquiri-

tigenin increased the amount of DR5 protein among TRAIL

receptors. Isoliquiritigenin did not significantly increase

levels of the Bcl-2 family proteins Bcl-2, Bcl-xL, and BAX.

Conclusions Our results suggest that isoliquiritigenin has

the potential to overcome resistance to TRAIL in cancer

cells and its chemopreventive effects may depend on

TRAIL function.
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Abbreviations

DR5 Death receptor 5

TRAIL Tumor necrosis factor-related apoptosis-inducing

ligand

TNF Tumor necrosis factor

Bcl-2 B cell lymphoma-2

BAX Bcl-2-associated X protein

Introduction

The risk of human death is highest from malignant tumors.

Thus, prevention of malignant tumors is the most important

issue in the field of preventive medicine. Many epidemio-

logical studies have attempted to reveal a relationship

between foods and carcinogenesis. Foods have been con-

sidered to be related to the prevention of carcinogenesis. In

addition, there is much evidence that dietary components

are able to prevent carcinogenesis in animal models [1–3].

Isoliquiritigenin is a chalcone derivative contained in edi-

ble plants and used as a Chinese herbal medicine.

Isoliquiritigenin has potential as a chemopreventive agent

and has exhibited anti-carcinogenic effects in several

experimental models. Isoliquiritigenin inhibits aberrant

crypt foci from developing [4, 5], skin tumors [6], and

pulmonary metastasis of renal cell carcinoma [7] in mice.
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Moreover, studies in vitro show that isoliquiritigenin

directly induces apoptosis in different types of cancer cell,

such as prostate [8], lung [9], and gastric [10] cancer cells,

hepatoma cells [11], and melanoma cells [12]. In addition,

isoliquiritigenin suppresses ErbB3 signaling and the PI3K/

Akt pathways [13] and the NF-kB pathway [14, 15], which

relate to cancer progression. Thus, isoliquiritigenin is an

attractive agent in cancer prevention and therapy.

Tumor necrosis factor (TNF)-related apoptosis-inducing

ligand (TRAIL), a member of the TNF superfamily, has

been identified as an expressed sequenced tag (EST)

showing homology with TNF [16]. TRAIL kills many

types of cancer cell in vitro and in vivo, with little or no

toxic effect on normal cells [17, 18]. The property is very

useful for an anti-cancer agent. Not only recombinant

human TRAIL but also agonistic antibodies for TRAIL

receptors have been developed as anti-cancer agents [19,

20]. TRAIL or agonistic TRAIL-receptor antibodies are

undergoing Phase I/II clinical trials in patients with solid

malignant tumors or non-Hodgkin lymphomas [21]. To

date, five TRAIL receptors have been reported: death

receptor (DR) 5, also called TRAIL-R2, TRICK2 or

KILLER [22–26], DR4, decoy receptor (DcR) 1, DcR2,

and osteoprotegerin [27]. Only DR4 and DR5 can mediate

TRAIL-induced apoptosis. The other receptors play a

dominant negative role by competing with DR4 and DR5

for interaction with TRAIL. DR4 and DR5 bind to pro-

caspase-8 and 10 through the adapter protein FAS-associ-

ated death domain (FADD), resulting in formation of a

death-inducing signaling complex (DISC) [27]. Caspase-8

and 10 are auto-activated after the DISC forms. There are

two different cell types based on the TRAIL-signaling

pathway for apoptosis. In type I cells, activated caspase-8

and 10 directly cleave and activate effector caspases such

as caspase-3. Consequently, effector caspases cleave many

substrates and cause apoptosis. On the other hand, in type

II cells, the apoptotic signal is transmitted to mitochondria

and the activation of caspase-9 downstream of the mito-

chondria leads to the cleavage and activation of effector

caspases. Some malignant tumors still remain resistant to

TRAIL [28]. Thus, it is important to overcome the resis-

tance in TRAIL-based cancer treatment.

In this study we show that isoliquiritigenin increases

production of DR5 protein and overcomes resistance to

TRAIL in colon cancer HT29 cells.

Materials and methods

Reagents

Isoliquiritigenin was purchased from Extrasynthese

(Genay, France) and dissolved in DMSO. Soluble

recombinant human TRAIL/Apo2L was obtained from

PeproTech (London, UK). R&D Systems (Minneapolis,

MN, USA) supplied human recombinant DR5 (TRAIL-

R2)/Fc chimeric protein and the following caspase

inhibitors: pan-caspase inhibitor, zVAD-fmk; caspase-3

inhibitor, zDEVD-fmk; caspase-8 inhibitor, zIETD-fmk;

caspase-9 inhibitor, zLEHD-fmk; and caspase-10 inhibitor,

zAEVD-fmk.

Cell culture

Human colon cancer HT29 cells were maintained in

Dulbecco’s-modified Eagle medium (DMEM) supple-

mented with 10% fetal bovine serum, 4 mM glutamine,

100 U/ml penicillin, and 100 lg/ml streptomycin. Cells

were incubated at 37�C in a humidified atmosphere of 5%

CO2.

Detection of apoptosis

For detection of the Sub-G1 population, cells were har-

vested from culture dishes, washed with PBS and

suspended in PBS containing 0.1% Triton-X100 and RNase

A (Sigma, St Louis, MO, USA). The nuclei were stained

with propidium iodide (PI). The DNA content was mea-

sured using FACS Calibur (Becton Dickinson, Franklin

Lakes, NJ, USA). For each experiment, 10,000 events were

collected. The data (means ±S.D.; n = 3) were analyzed

with Cell Quest software (Becton Dickinson). Student’s t

test was used.

DAPI staining

HT29 cells were plated out on six-well plates and treated

with isoliquiritigenin or solvent (DMSO) for 24 h. The

cells were washed with PBS and treated with methanol for

1 min. After drying, they were treated with PBS containing

40,6-diamino-2-phenylindole (DAPI) and nuclei were

observed by fluorescence microscopy.

Western blot analysis

Western blotting was performed as described previously

[29]. Rabbit polyclonal anti-DR5 and DR4 (Prosci, Po-

way, CA, USA), DcR2 (Imgenex, San Diego, CA, USA),

BAX and Bcl-xL (Santa Cruz, Santa Cruz, CA, USA)

antibodies, and mouse monoclonal anti-Bcl-2 (Santa

Cruz) and b-actin (Sigma) antibodies were used as the

primary antibodies. The signal was detected with an ECL

Western blot analysis system (GEhealthcare, Piscataway,

NJ, USA).
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Results

Combined treatment with isoliquiritigenin and TRAIL

induces apoptosis in colon cancer HT29 cells

TRAIL is a promising agent for cancer treatment; however,

some cancer cells are resistant to it. To overcome this

resistance, we searched for agents that can enhance TRAIL

efficacy and identified isoliquiritigenin as a candidate. As

shown in Fig. 1, colon cancer HT29 cells were resistant to

TRAIL, with less than 10% of the cells undergoing apop-

tosis. Isoliquiritigenin is known to induce apoptosis in

many types of cancer cell; it also only slightly induced

apoptosis in HT29 cells, however. Next, we simultaneously

used isoliquiritigenin and TRAIL. Interestingly, the com-

bined treatment significantly induced apoptosis in HT29

cells compared with TRAIL treatment alone. Notably,

40 lM isoliquiritigenin had the strongest effect with

TRAIL.

Caspase inhibitors and DR5/Fc chimeric protein block

the apoptosis induced by the combination

of isoliquiritigenin and TRAIL

Apoptosis proceeds through the sequential cleavage and

activation of caspases. To verify that the sub-G1 popula-

tions detected in Fig. 1 reflect caspase-dependent

apoptosis, we used caspase inhibitors. As shown in Fig. 2a,

the pan-caspase inhibitor zVAD-fmk significantly blocked

apoptosis induced by the combination of isoliquiritigenin

and TRAIL. Moreover, specific caspase inhibitors against

caspase-3, 8, 9, and 10 also significantly inhibited the

apoptosis. Taken together, these results indicate that the

combination of isoliquiritigenin and TRAIL induces

caspase-dependent apoptosis. Of note, caspase-9 inhibitor

clearly abrogated the apoptosis induction. Caspase-9 plays

a role in apoptosis downstream mitochondria and mediates

the apoptotic signal to effector caspase-3 in type II cells.

On the other hand, in type I cells, TRAIL induces apoptosis

without a mitochondrial pathway. Therefore, these results

indicate that the combination of isoliquiritigenin and

TRAIL induces caspase-dependent apoptosis through a
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Fig. 1 Combined treatment with isoliquiritigenin and TRAIL induces

apoptosis in colon cancer HT29 cells. Colon cancer HT29 cells were

treated with 10 ng/ml TRAIL and/or the indicated concentration of

isoliquiritigenin for 24 h. The Sub-G1 population was analyzed by

flow cytometry. The values shown are means (n = 3); bars, ±S.D.

*P \ 0.01 when compared with the sample treated with TRAIL alone
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Fig. 2 Caspase inhibitors and DR5/Fc chimeric protein block

apoptosis induced by the combination of isoliquiritigenin and TRAIL.

Colon cancer HT29 cells were treated with 10 ng/ml TRAIL and/or

40 lM isoliquiritigenin with or without caspase inhibitors (a) or DR5/

Fc chimeric protein (b) for 24 h. The Sub-G1 population was

analyzed by flow cytometry. The values shown are means (n = 3);

bars, ±S.D. C3, caspase-3 inhibitor; C8, caspase-8 inhibitor; C9,

caspase-9 inhibitor; C10, caspase-10 inhibitor; VAD, pan-caspase

inhibitor. *P \ 0.01 when compared with the sample treated with

isoliquiritigenin and TRAIL
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mitochondrial pathway dependent on caspase-9 in a type II

cell manner. TRAIL causes apoptosis by interacting with

specific pro-apoptotic receptors, DR5 and DR4. To exam-

ine whether the combination of isoliquiritigenin and

TRAIL induces apoptosis through TRAIL receptors, we

used a DR5/Fc chimeric protein which has a dominant

negative effect, because it can interact with TRAIL but not

mediate apoptosis. As shown in Fig. 2b, the DR5/Fc chi-

mera abrogated the apoptosis induced by the combined

treatment. The result suggests that the combination of

isoliquiritigenin and TRAIL induces apoptosis through a

TRAIL-signaling pathway mediated by TRAIL receptors

but not in a non-specific manner.

Combination of isoliquiritigenin and TRAIL

induces nuclear fragmentation

Next, we observed nuclei treated with isoliquiritigenin and/

or TRAIL using DAPI staining (Fig. 3). In apoptotic cells,

nuclei are condensed and fragmented. As a single treat-

ment, neither isoliquiritigenin nor TRAIL had any effect.

The image of nuclei was similar to that of cells treated with

the solvent DMSO. Cells treated with both isoliquiritigenin

and TRAIL had fragmented and condensed nuclei, sug-

gesting that only combined treatment drastically induced

apoptosis consistent with the sub-G1 data in Fig. 1.

Moreover, the pan-caspase inhibitor zVAD-fmk blocked

the nuclear fragmentation and condensation induced by the

combination of isoliquiritigenin and TRAIL, indicating that

the change of nuclear image is mediated via the activation

of caspases.

Isoliquiritigenin up-regulates a TRAIL receptor

DR5 protein

We hypothesized that isoliquiritigenin regulates proteins

which relate to TRAIL signaling and enhances TRAIL-

induced apoptosis. We therefore examined whether isoli-

quiritigenin alters the expression of proteins which act on

TRAIL-induced apoptosis. First, we examined protein

levels of TRAIL receptors. Isoliquiritigenin increased the

amount of pro-apoptotic receptor DR5 in a dose-dependent

manner (Fig. 4). As previously shown [29], DR5 protein

furnishes two bands. An upper band was barely detectable

but a lower band was increased by the isoliquiritigenin

treatment. Moreover, neither DR4 nor DcR2 was appa-

rently affected by isoliquiritigenin. DcR1 protein was not

detected (data not shown). Bcl-2 family proteins are key

factors in the induction of apoptosis. Bcl-2 and Bcl-xL can

block apoptosis induced by TRAIL [30, 31]. Conversely,

BAX facilitates TRAIL-induced apoptosis, and a defi-

ciency of BAX abrogates TRAIL-induced apoptosis [32].

We performed Western blotting of Bcl-2, Bcl-xL, and

BAX. Isoliquiritigenin did not affect the levels of these

Bcl-2 family proteins in a dose-dependent manner. Taken

together, the results suggest that isoliquiritigenin increases

the amount of DR5 protein and enhances apoptosis induced

by TRAIL.

DMSO

Isoliquiritigenin

             

Isoliquiritigenin

Isoliquiritigenin TRAIL

+
        TRAIL

             +
 TRAIL+zVAD

Fig. 3 The combination of

isoliquiritigenin and TRAIL

causes nuclear fragmentation in

HT29 cells. Colon cancer HT29

cells were treated with 10 ng/ml

TRAIL and/or 40 lM

isoliquiritigenin for 24 h. Nuclei

were stained with DAPI after

methanol fixation and observed

by fluorescence microscopy.

The pan-caspase inhibitor

zVAD-fmk was added at the

same time as TRAIL and

isoliquiritigenin. Apoptotic cells

are indicated with arrows
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Discussion

We showed here that the combination of suboptimal con-

centrations of isoliquiritigenin and TRAIL drastically

induces apoptosis in colon cancer HT29 cells. Interest-

ingly, treatment with either isoliquiritigenin or TRAIL

alone hardly induced any apoptosis in HT29 cells. The

results mean that the combination of these agents generates

an effect that is more than simply additive. As the effect of

single agents is becoming limited and the identification of

new agents is generally difficult, it is promising that a

combination of agents can function synergistically. As a

possible mechanism by which isoliquiritigenin enhances

TRAIL efficacy, we showed that isoliquiritigenin increases

the level of DR5 but not DR4. These results indicate that

the regulation of each TRAIL receptor is different from

that of other receptors. We previously reported the

sequence of a promoter region in DR5, different from that

in DR4, and suggested that the regulation is independent

[33]. This hypothesis is consistent with the current findings.

In addition, we previously reported that TRAIL efficacy is

facilitated by agents which can up-regulate DR5 expres-

sion, for example histone deacetylase inhibitors [29],

tunicamycin [34], proteasome inhibitor [35], flavonoids

[36–38], and carotenoids [39]. To enhance the effect of an

agent which acts as a ligand against a receptor, combined
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Fig. 4 The combination of

isoliquiritigenin and TRAIL up-

regulates the TRAIL receptor

DR5. a HT29 cells were treated

with the indicated

concentrations of

isoliquiritigenin for 24 h.

Western blotting was performed

with anti-DR5, DR4, and DcR2

antibodies. b-Actin was used as

a loading control. As a positive

control, a DR5 protein pattern

after a tunicamycin treatment is

shown [34]. b HT29 cells were

treated as shown in a. Western

blotting was performed with

anti-Bcl-2, Bcl-xL, and BAX

antibodies. b-Actin was used as

a loading control. CT, treated

with solvent DMSO. Arrows,

DR5 protein bands; asterisks,

non-specific bands. Band

intensity is analyzed by ImageJ

software and shown as bar
graphs
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treatment with another agent which can increase the level

of the receptor is a very promising strategy.

The tumor-suppressor p53 is important in cancer pre-

vention and more than half of malignant tumors have p53

mutations [40]. p53 contributes to sensitivity of cancer

cells to anti-cancer agents [41] and DR5 is downstream of

p53 [26, 42]. However, HT29 cells have a p53 mutation,

indicating that DR5 up-regulation by isoliquiritigenin is

independent of p53. In addition, the combination of iso-

liquiritigenin and TRAIL can induce apoptosis independent

of p53 status.

Isoliquiritigenin has had chemopreventive effects

against malignant tumors in animal studies [4–7]; however

the mechanism underlying these effects has not been elu-

cidated completely. TRAIL, an endogenous protein

expressed in many types of cell, causes an anti-tumor

immune response [43]. However, a recombinant human

TRAIL protein was used in the current study. Therefore,

isoliquiritigenin may exert a chemopreventive effect in

cooperation with endogenous TRAIL in vivo. Recently, it

has been reported that a deficiency of DR5 promoted

tumorigenesis and enhanced metastasis in mice [44, 45].

The up-regulation of DR5 expression may be important to

the chemopreventive effect of isoliquiritigenin. Moreover,

interferon [46], retinoic acids [47, 48] and Bacillus Cal-

mette-Guerin (BCG) [49] promote endogenous expression

of TRAIL. A combination of isoliquiritigenin and these

TRAIL inducers may effectively kill cancer cells.

In conclusion, isoliquiritigenin up-regulates DR5

expression, and in combination with TRAIL, markedly

induces apoptosis in TRAIL-resistant colon cancer HT29

cells through activation of caspase-8, 10, 9, and 3 (Fig. 5).

Our data suggest that isoliquiritigenin is useful for TRAIL-

based cancer treatment and that the chemopreventive effect

of isoliquiritigenin may depend on TRAIL function.
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