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Abstract

Objectives Many traditionally established medical inter-

ventions are not examined with randomized trials espe-

cially in emergency medicine. We researched what is the

scientific basis of the measurement of the causal effect in

these interventions and proposed another trial to measure

causal effects.

Methods We deduced steady state trials from the coun-

terfactual model and used Bayesian approaches to estimate

causal effects statistically.

Results When the state of the observed person is fairly

steady before an exposure, the ratio of the after-period to

the before-period of the exposure is sufficiently small, and

changes are obtained in relatively short time, it is possible

to postulate that the state of the counterfactual person to be

compared is almost equal to the state of the real person

before the exposure. Bayesian approaches show that the

causal effect of the exposure is estimated even in only one-

person steady state trials, when large changes are observed.

Conclusions Steady state trials are valid methods to

measure causal effects and can measure causal effects even

in one-person trials. When we can measure the causal

effect of interventions with steady state trials, these inter-

ventions should be regarded as scientific without use of

randomized trials.

Keywords Cross-over trials � Counterfactual model �
Steady state � Period ratio � Individual causal effect

Introduction

Evidence-based medicine (EBM) appeared as a handy tool

kit for clinicians who had not understood the basic thinking

of epidemiology [1]. After the advocates of EBM suc-

ceeded in nominating randomized trials to be paramount

[2], the so-called ‘‘Hierarchy of Strength of Evidence’’

towered in medical practice and many clinical guidelines

prostrated themselves in front of the pyramid [3, 4]. Many

traditionally established medical interventions were strip-

ped of their rank for reasons having to do with observa-

tional studies. Under these circumstances, Smith and Pell

[5] asked a sarcastic question why protagonists of EBM did

not participate in a randomized trial of parachute use.

In epidemiological studies, the counterfactual or poten-

tial-outcome model has become increasingly standard for

causal inference [6–8]. However, the theoretical ideal to

measure causal effects of exposure is impossible. To

achieve a valid substitution for the counterfactual experi-

ence, we resort to various design methods that promote

comparability. One approach is a cross-over study and

another is a randomized trial. Other approaches might

involve choosing unexposed study subjects who have the

same or similar risk-factor profiles for disease as the

exposed subjects [9]. Case-crossover design was intro-

duced for estimating a short term, transient effect of

intermittent exposures on acute-onset diseases [10, 11]. For

The primitive idea was presented by OI in the lecture ‘‘From

evidence-based medicine to scientific medicine’’ at the 42nd biannual

meeting of Department of Neurology, Kyoto University Graduate

School of Medicine in December 2011.
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each case, one or more predisease or postdisease time periods

are selected as matched control periods for the case. The

exposure status of the case at the time of the disease onset is

compared with the distribution of exposure status for the

same person in the control periods. The key feature of the

case-crossover design is that each case serves as its own

control. In this paper, we expand this key feature and propose

another valid substitution of the counterfactual ideal to

measure causal effects and show that parachute use and many

interventions in emergency medicine have the scientific basis

of the causal inference without randomized trials.

Materials and methods

We deduce steady state trials from the counterfactual model.

The scheme is presented in Fig. 1. Bayesian methods are used

to estimate causal effects statistically [12, 13] (see appendix).

Posterior distributions are computed with WinBUGS version

1.4.3, which reports two-sided equi-tail-area credible inter-

vals [14]. We use these intervals for convenience, although

highest posterior density intervals are more preferable.

Results

Steady state trials

For the purpose of discussion, letters are defined as

follows;

t time

T0 the time when the observation starts

T1 the time when the exposure is done

T2 the time when the outcome is observed

B = (T1 - T0) the period before the exposure

A = (T2 - T1) the period after the exposure

n the integer which gives the ratio of A to

B, A:B = 1:n

S the state of the observed person which is

a function of time

X the state S just before the time T1

Y the state S at the time T2

Z the state of the counterfactual ideal of the

unexposed person which is a function of

time

W the state Z at the time T2.

Steady state trials begin with the observation of the state

of the object person (Fig. 2). Suppose the state is almost

steady during the period B (Fig. 3). Namely, the derivative

of the state with respect to time during the period B is

dS

dt
¼ k þ d;

where k is a constant and d is noise which follows the

normal distribution N(0, r2). We observe the state S

(n ? 1)-times at the interval of the period A and obtain

sample noises n-times (di; i = 1, 2, …, n) during the period

B. Just before the exposure, the state is recorded as X.

When we observe Y at the end of the period A after the

exposure, we get the mean value of dS
dt during the period A:

dS

dt
¼ ðY � XÞ=A:

When the ratio of the period A to the period B is suffi-

ciently small, i.e., n is sufficiently large, we can postulate

the derivative of the counterfactual unexposed state is k

plus noise dz which follows the same distribution as dis:

dZ

dt
¼ k þ dz:

However, we cannot really observe dZ
dt , so the value of

(k ? dz) is replaced with the observed value of (k ? dis).

In order to estimate the difference between (Y –X)/A and

(k ? dis), we postulate that the distribution of (Y – X)/

A follows the normal distribution with the same variance as

r2 which is estimated by the sample variance of (k ? dis).

Then the difference between (Y – X)/A and (k ? dis) can be

statistically estimated with the t distribution. When the

outcome Y has the quality different from the state X, the

nominal scale is applied.

Fig. 1 Counterfactual model. We establish a hypothetical person in

the counterfactual world in order to compare the outcome of the

exposed person with the outcome of the unexposed person. After

the exposure, both the conditions of the exposed person and the

unexposed person are observed at the same time. As the only

difference between the two settings is the exposure, it is possible to

measure the effect of the exposure
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Statistical inference of causal effects

Suppose when we observe the outcome Y which belongs to

the category different from the state X and the change is

of practical importance, or when the difference between

(Y – X)/A and (k ? dis) is statistically significant and large

enough to be of practical importance. We now discuss the

causation of the incidence of such an important outcome Y,

which we designate Yimp in the following discussion.

The probability that Yimp happens during the period A

with the exposure is represented by the letter he:

he ¼ PðYimp jE; CÞ;

where E is the exposure, C is the condition that the state is

steady during the period B and the vertical line represents

conditioning. We postulate that Yimp is a Bernoulli variable

during the period A. The probability that Yimp happens

during the period A without the exposure (:E) is

represented by the letter hu:

hu ¼ PðYimp j :E; CÞ:

As the state is steady and the period A is small relative to

the period B, we can postulate that the counterfactual

condition of the unexposed state in the period A is

equivalent to the real condition in the period B, and the

probability that Yimp happens within the time span of the

period A during the period B is equal to hu. Then the period

B has a sequence of n-times repetitions of a trial with

constant probability hu.

Suppose that we observe Yimp after the exposure and

there is no incidence of Yimp during the period B in one

steady state trial. The components of the Bayesian model

for steady state trials can be written as follows:

prior distribution he � Beta a1; b1ð Þ
hu � Beta a2; b2ð Þ

likelihood p yejheð Þ ¼ he

p yujhuð Þ ¼ 1� huð Þn

posterior distribution D ¼ he ye� huj jyu;

,where ye is the success of Yimp in one trial under the

exposure, yu is the no success of Yimp in n trials under the

non-exposure, and D is the difference between he and hu

taking account of the trial evidence. Ideally, the likeli-

hood of no success under the non-exposure should be

computed with n-times trials in the real world and one-

time trial in the counterfactual world. The trial in the

counterfactual world cannot be observed. Thus, we

approximately compute this likelihood with n-times trials

in the real world. The posterior distribution D is computed

with WinBUGS.

When we are uncertain about the prior distribution, we

adopt Beta(0.5, 0.5) or Beta(1, 1) as the reference prior

distribution for he and hu. The posterior distribution of hu

shifts to zero as n becomes larger. With the reference prior

Beta(0.5, 0.5) for he and hu, the lower limit of the 95 %

credible interval of D is over zero when n is equal to or

more than four. With the reference prior Beta(1, 1) for he

and hu, the lower limit of the 95 % credible interval of D is

over zero when n is equal to or more than seven. Classical

statistical approaches also show similar results [15, 16].

The larger the number of n is, the more credibility we can

gain in the inference of the causal effect. However, the

lower limit of the 95 % credible interval of D cannot be

over 0.15 with the prior Beta(0.5, 0.5) and not over 0.16

with the prior Beta(1, 1), no matter how n may become

large. This is the limitation of one-person trials. Population

studies with many persons can show larger lower limits of

the credible interval, if the success proportion is high.

Fig. 2 Steady state trials. S the state, X S just before the exposure,

Y S at the end of the period A, W the counterfactual state at the end of

the period A. S is steady during the period B

Fig. 3 Derivative of the state. Period A:Period B = 1:n, where n is a

positive integer. dS
dt is the derivative of S with respect to time;

dS
dt = k ? d, where k is constant and d (di; i = 1, 2,…, n) is noise

which follows the normal distribution. We observe the state (n ? 1)-

times at the interval of the period A during the period B. The

counterfactual derivative of the state is postulated as (k ? dz), where

dz follows the same distribution as dis
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Steady state implies that the previous observations of the

same condition showed no incidence of Yimp without

the exposure. When we believe the previous evidence for

the no-incidence of Yimp under the non-exposure, we can

adopt, for example, Beta(1, 1000000) as the prior distri-

bution for hu. Adopting almost null prior distribution

Beta(1, 1000000) for hu means that p(D) is practically

equal to p(he|ye).

Relation to cross-over trials

The simple cross-over design is outlined by Armitage et al.

[17]. With two treatments, F and G, one randomly chosen

group of patients receives treatments in the order FG, while

the other group receives them in the order GF. The active

response that is common to all subjects in a particular

group and particular period with the treatment received is

modeled as follows:

Period 1 Period 2

Group I (FG) l ? sF ? p1 l ? sG ? p2 ? cFG

Group II (GF) l ? sG ? p1 l ? sF ? p2 ? cGF

Here, l is a general mean, the s terms represent treat-

ment effects, the p terms represent period effects, and the c
terms represent the treatment 9 period interaction.

When F is no treatment, sF and cFG are null and the

model of the group I is as follows:

Period 1 Period 2

Group I (FG) l ? p1 l ? sG ? p2

Suppose the ratio of the period 2 to the period 1 is 1:n.

The constancy of dS
dt means that the period effect p1 is

constant during the period 1. Under the condition of state

steadiness which is confirmed by the (n ? 1) times

observations during the period 1, when the period 2 follows

successively the period 1 and n is sufficiently large, we can

postulate that the p2 is almost equal to (p1 ? p1/n) in the

group I. The larger n is, the more we can believe the

steadiness of the state and the approximation of p2. Then

the difference of the response between the two periods is

(sG ? p1/n) and we can measure sG with the repeated

observations of group I. Thus steady state trials are con-

sidered as variants of cross-over trials.

Prerequisite for steady state trials

How many figures should we adopt for n? In the above

model, we postulate that dZ
dt is equal to k, or p2 is equal to

(p1 ? p1/n). When n is infinitely large, this postulation is

reasonable. However, when n is moderately large, the

postulation receives criticism. There are many biological

parameters which show cyclical or periodic variations, for

example follicle-stimulating hormone or luteinizing hor-

mone levels in female blood plasma. Another criticism is

that the observed variable might reach the critical point

after the steady state and change drastically without

exposures. Before executing steady state trials in medicine,

we have to examine biologically the trial condition for the

possibility of cyclical or drastic state change. If some

period ratio is thought to be critical, we have to avoid using

such n for steady state trials.

Discussion

We have deduced steady state trials (SSTs) from the

counterfactual model, from which randomized controlled

trials (RCTs) were also deduced. Although RCTs are

thought to be paramount trials in recent clinical research,

STTs can also offer the valid method to measure causal

effects, when the state before the exposure is steady and

large changes are immediately observed. The smaller the

ratio of the after-period to the before-period is, the better

we can rely on the measurement of the causal effect. When

the after-period is relatively long, the measurements of

SSTs may be confounded and RCTs should be considered

in such situations. RCTs are also necessary when outcomes

long after the exposure are important, even if SSTs show

causal effects immediately.

Individual causal effects are defined as a contrast of the

counterfactual outcomes. Because only one of those values

is observed, it has been proposed that individual causal

effects cannot be identified in epidemiological research

[18, 19]. The epidemiologic principle is that a person may

be exposed to an agent and then develop disease without

there being any causal connection between exposure and

disease [9]. SSTs show that we can measure individual

causal effects in the condition where repeated observations

are performed, the state before the exposure is steady, and

large changes are immediately obtained after the exposure.

This approach could open the door to the individual causal

inference and other conditions for the individual causation

that should be researched in epidemiology.

One example of steady state trials is parachute use in

skydiving [5]. At the height of 4000 m, we jump into the

sky and we are falling at the terminal velocity of 55 m/s
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after a few seconds. Within 3 s after opening parachutes,

we usually fall at the next terminal velocity of 5 m/s. Now

we record acceleration values at the interval of 3 s. Once

we have the terminal velocity of 55 m/s, the acceleration

value of 0 m/s2 is observed about twenty times before

opening parachutes and the deceleration value of 17 m/s2

for 3 s is observed one time after opening parachutes. The

Yimp is the deceleration value of 17 m/s2 for 3 s. After

sampling one successful skydiving, the 95 % credible

interval of the posterior distribution D with prior Beta(0.5,

0.5) is computed as 0.12–0.99. In 2010, 1308 members of

the United States Parachute Association (USPA) reported

skydiving injuries requiring medical attention [20]. During

the same year, USPA members and first-time students

made roughly 3 million jumps. These data may be trans-

lated into the following sample distribution.

Under the exposure 2998692 Yimps out of 3000000 trials

Under the non-exposure No Yimp out of 3000000� 20 trials

We adopt Beta(0.5, 0.5) as the prior distributions for he

and hu. However, the huge sample size fixes practically the

same posterior distribution as when we believe the prior

probability of hu is almost null. The 95 % credible interval

of D is computed as 0.9995–0.9996 with WinBUGS.

Classical statistics show that the 95 % confidence interval

of the safe skydiving proportion is 0.99954–0.99959.

SSTs are practicable in the situation where immediate

clinical responses are important, such as in the emergency

room, where confounders are under the control of practi-

tioners. Many treatments in emergency medicine have a

long good history of SSTs in innumerable persons and can

be regarded as scientific medical interventions without

RCTs, such as intravenous injection of glucose for patients

in hypoglycemic coma, injection of adrenalin (epinephrine)

for patients with anaphylactic shock, a tourniquet for

bleeding patients, and so on.

For example, one-person SST is presented in the use of

adrenalin injection for an imaginary adult patient with

anaphylactic shock. The data of the patient is shown in the

Table 1. The systolic blood pressures (SBP) were recorded

at the interval of 1 min. The patient had an intravenous

injection of 0.1 mg adrenalin at time 10 min. We first

check whether dS
dt in the period B follows normal distribu-

tion. If there are any outliers, SSTs is not the choice for this

trial. The data of the table can be considered as following

normal distribution. The mean of (k ? dis) is one. The

estimated variance of (k ? dis) is

[(-1)2 ? (-2)2 ? 02 ? 22 ?

(-1)2 ? 02 ? 12 ? 02 ? 02 ? 12]/(10 - 1) = 1.33.

The standard error of [(Y - X)/A - (k ? dis)] is

H[1.33(1/1 ? 1/10)] = 1.21.

Two-sample t statistic is (32 - 1)/1.21 = 25.6,

which follows the t distribution on (1 ? 10 - 2) = 9

degrees of freedom. The P value is computed as\10-8. In

this statistical estimation, we postulate that the distribution of

(Y – X)/A follows the normal distribution with the same

variance as r2 which is estimated by the sample variance of

(k ? dis). However, we do not really have data for the esti-

mation of the variance of (Y – X)/A. We propose the above P

value as an informal index to be used as a measure of dis-

crepancy between (Y – X)/A and (k ? dis). We recommend

that this P value should be smaller than 0.001 to show dis-

crepancy. SBP over 90 mmHg is a clinically important value

in shock, and we can consider that dS
dt of 32 mmHg/min for

1 min after the exposure is Yimp. With prior Beta(0.5, 0.5) for

he and hu, the 95 % credible interval of the posterior distri-

bution D is computed as 0.09–0.99. When we have the prior

information that Yimp have not been observed in the past

unexposed states for 1000 min in total, we can adopt

Beta(0.5, 1000.5) as the prior distribution for hu and n can be

smaller to infer causal effects, if we confirm that unexposed

state in the period B is in the same condition as the previously

reported unexposed states. After observing one success of

Yimp after the exposure, with prior Beta(0.5, 0.5) for he, prior

Beta(0.5, 1000.5) for hu and n = 1, the 95 % credible

interval of the posterior distribution D is computed as

0.15–1.00. Practically, n will be more than two in order to

confirm the equal conditions, even when we adopt almost null

prior for hu. When we execute SSTs in population studies, if

some period ratio is thought to be critical, the participants are

divided into two or three groups to which different values of

n are allocated. RCTs between the groups are also possible in

this setting.

Table 1 Systolic blood pressure in an imaginary adult patient with

anaphylactic shock

Time (min) S (mmHg) dS/dt (mmHg/min)

0 50

1 50 0

2 49 -1

3 50 1

4 53 3

5 53 0

6 54 1

7 56 2

8 57 1

9 58 1

10 60 2

Exposure

11 92 32

Systolic blood pressure of the patient was recovering slowly without

treatments. The patient had an intravenous injection of 0.1 mg

adrenalin at time 10 min

S Systolic blood pressure
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SSTs are also possible in treatment trials of neurode-

generative diseases whose patients almost always show

progressive deteriorations. For example, although RCTs

has not been performed in the levodopa therapy of Par-

kinson’s disease [21], neurologists will admit that symp-

toms lasting for several months of early Parkinson’s

patients almost always improve within a few days after

receiving levodopa.

In preventive medicine, oral rehydration therapy is effective

against diarrhea [22]. RCTs have compared oral rehydration

with intravenous hydration [23]. SSTs can offer the measure-

ment of the effect difference between the treated and the non-

treated in acute stage diarrhea. Because of the necessity of

controlling confounders, SSTs may be restricted within a

narrow set of research topics in preventive medicine. However,

if we have sufficientpast databases of disease incidence and the

derivative of the incidence rate with respect to time is constant,

we may use SSTs for the measurement of effects of exposures

which have a latent period of several years.
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Appendix

The essence of Bayes theorem is as follows. Suppose h is

some quantity that is currently unknown, and let p(h) denote

the prior distribution of h. Suppose we have some observed

evidence y, whose probability of occurrence is assumed to

depend on h. This dependence is formalized by p(y|h), known

as the likelihood. The posterior distribution taking account of

the evidence y is denoted p(h|y). Bayes theorem is

pðhjyÞ / pðyjhÞ � pðhÞ:

The beta distribution is a conjugate family for the

binominal likelihood. This means that a beta prior

distribution and a binominal sample distribution provide

a beta posterior distribution by Bayes theorem.

The mean of Beta(a, b) is a
aþb.
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