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Abstract

Objectives The prediction of influenza epidemics has

long been the focus of attention in epidemiology and

mathematical biology. In this study, we tested whether time

series analysis was useful for predicting the incidence of

influenza in Japan.

Methods The method of time series analysis we used

consists of spectral analysis based on the maximum

entropy method (MEM) in the frequency domain and the

nonlinear least squares method in the time domain. Using

this time series analysis, we analyzed the incidence data of

influenza in Japan from January 1948 to December 1998;

these data are unique in that they covered the periods of

pandemics in Japan in 1957, 1968, and 1977.

Results On the basis of the MEM spectral analysis, we

identified the periodic modes explaining the underlying

variations of the incidence data. The optimum least squares

fitting (LSF) curve calculated with the periodic modes

reproduced the underlying variation of the incidence data.

An extension of the LSF curve could be used to predict the

incidence of influenza quantitatively.

Conclusions Our study suggested that MEM spectral

analysis would allow us to model temporal variations of

influenza epidemics with multiple periodic modes much

more effectively than by using the method of conventional

time series analysis, which has been used previously to

investigate the behavior of temporal variations in influenza

data.

Keywords Influenza � Prediction analysis �
Time series analysis � Surveillance � Epidemiology

Introduction

For preventing and predicting influenza epidemics, it is

necessary to investigate temporal variations of the disease

morbidity data in detail [1–5]. To elucidate temporal var-

iational structures in the morbidity data of influenza, many

studies have been carried out by using conventional time

series analysis [6–12], such as a Gaussian random process

for the modeling of influenza epidemics [12] and an

autoregressive model (AR) including a seasonal auto-

regressive-integrated moving average model [10].

On the other hand, recently, researchers have tried to

interpret the behavior of temporal variations in the mor-

bidity of influenza in terms of nonlinear dynamics which

causes multiple periodic structures with characteristic

fluctuations [13–16]. However, the Gaussian random pro-

cess and the AR model using random noise are not robust

for interpreting the multiple periodic structures caused by

nonlinear dynamics [17]. Thus, in order to investigate

temporal variations in the morbidity of influenza for pre-

dicting the disease incidence, it is necessary to establish a

new method of time series analysis.

We have already proposed a newly devised method of

time series analysis, which enables us to identify multiple

periodicities in the temporal variations of time series

[18–20]. The series of analysis in the present study com-

bines spectral analysis based on the maximum entropy

method (MEM) in the frequency domain with the nonlinear
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least squares method (LSM) in the time domain. MEM

spectral analysis is useful to investigate the periodicities of

time series of short data length, such as the morbidity data

of infectious diseases. The validity of the result obtained

from MEM spectral analysis is confirmed by calculating

the optimum least squares fitting (LSF) curve to the time

series with the LSM. With this method of time series

analysis, we previously proposed a new analysis method

for the prediction of epidemics with a clear criterion of

adequate prediction [24]. The present method is based on

the most traditional method of prediction analysis, which

uses an extrapolation curve corresponding to underlying

variations of time series in the future. A key point of the

method is an estimation of the underlying variation of time

series. The present method has been used successfully for

the time series generated from a susceptible/exposed/

infectives/recovers model [21], which is a well-known

nonlinear dynamical system for analyzing epidemics of

infectious diseases including influenza. Satisfactory results

were also obtained for the morbidity data of measles [18,

21–25], which, because of the comparative simplicity of

infection and immunity of measles, is useful as a model of

another infectious diseases [26].

Regarding influenza, Kakehashi et al. [8] separated the

morbidity data in Japan into a seasonal component, a qua-

dratic trend, and an AR process. On the other hand, our

preceding work on influenza epidemics in Japan [27] iden-

tified a periodic structure of morbidity data that changes

temporally because of the effect of influenza pandemics and

vaccine programs in Japan. Based on this result, in the present

study, we further investigated periodic structures of influenza

morbidity data in Japan in detail, and attempted to predict

future values of the morbidity of influenza quantitatively.

Materials and methods

Incidence data

The time series data analyzed in the present study represent

the monthly reported numbers of influenza cases per

100,000 population. The data were obtained from Statistics

of Communicable Disease in Japan [28]. The monthly

incidence data were gathered over 612 months from Jan-

uary 1948 to December 1998, covering the periods of

pandemics in 1957, 1968, and 1977. A detailed description

of the incidence data is given in our previous work [27].

We also analyzed the data for the weekly incidence of

influenza in Japan from January 1987 to October 2010

obtained from the Infectious Diseases Weekly Report

Japan (IDWR) [29]. The weekly incidence data represent

the weekly reported numbers of influenza cases per sentinel

clinic and hospital.

Time series analysis

Theoretical background

We take any time series data {x(t)} (t time) to represent

discrete data at t = kDt (k = 1, 2, 3, …N) where Dt is

the time interval and N the length of the time series. The

data are divided into two parts: analysis range {xA(t)}

and prediction range {xP(t)}. We investigate the periodic

structure of the data in {xA(t)}, and use it to indicate

the data in {xP(t)} which follows the analysis range

behind.

The data in the analysis range, {xA(t)}, are assumed to

be composed of systematic and fluctuating parts [30]:

fxAðtÞg ¼ systematic partþ fluctuating part: ð1Þ

The systematic part in Eq. 1 is regarded as an

underlying variation of {xA(t)}. The fluctuating part in

Eq. 1, resulting from a dynamic mechanism such as

chaos dynamics existing behind the data and/or random

noise caused by measurement error, is obtainable by

subtracting the underlying variation from {xA(t)}. We

can use the extrapolation curve of the underlying

variation for prediction [31]. A key point for prediction

analysis is the estimation of the underlying variation.

The underlying variation is assumed to be described as

the function xUV(t) given by the linear combination of sine

and cosine functions,

xUVðtÞ ¼ a0 þ
XS

n¼1

fan sinð2pfntÞ þ bn cosð2pfntÞg; ð2Þ

which is calculated using LSM for {xA(t)} with unknown

parameters S, fn, a0, an, and bn (n = 1, 2, …, S) where S is

the total number of components, fn (=1/Tn, Tn: its period)

the frequency of the n-th periodic component, an and bn the

amplitudes of the n-th component, and a0 a constant which

indicates the average value of the time series.

The LSM using Eq. 2 must be nonlinear. Linearization

of this nonlinearity is required to obtain unique optimum

values of these parameters. In the present study, lineari-

zation is achieved by using the value of fn estimated by

MEM spectral analysis. xUV(t) thus obtained as the opti-

mum LSF curve is extended to the data in the prediction

range. As a result, future values are indicated quantitatively

by the extrapolation curve of xUV(t). The procedure for the

estimation of xUV(t) is constructed in five steps (I, II, III,

IV, and V).

Step I: Setting up the incidence data for analysis

Logarithmic transformation and/or removing long-term

trend of the data are performed, if the frequency histogram
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for the data is apart from the normal distribution required

for conventional spectral analysis.

Step II: Determination of fn (spectral analysis)

To estimate fn in Eq. 2, we conduct MEM spectral analysis

for {xA(t)} (Eq. 1), and obtain the power spectral density

(PSD). From the PSD, we can obtain the power repre-

senting the amount of amplitude of the data at each fre-

quency [30]. An outline of MEM spectral analysis is given

in the Appendix.

Step III: Determination of the fundamental modes

and the value of S

Based on the result of periods estimated by MEM spectral

analysis, we must assign fundamental modes fn that con-

struct the periodic structure of xUV(t) of {xA(t)} (Eq. 2). To

assign fundamental modes fn, we define the ‘‘contribution

ratio’’ to define a criterion for the evaluation of adequacy of

xUV(t) to {xA(t)}. Detailed explanations of the contribution

ratio are included in the Appendix. Based on the result of

the contribution ratio, we can safely determine the funda-

mental modes constructing xUV(t) of {xA(t)} and the opti-

mum value of S in Eq. 2.

Step IV: Determination of a0, an, and bn (LSM)

The optimum values of parameters a0, an, and bn (n = 1, 2,

…, S) in Eq. 2 are exactly determined from the optimum

LSF calculation using Eq. 2 with the values of S and fn.

Step V: Prediction of the incidence

The extrapolation of the optimum LSF curve can be used for

prediction of the incidence because the optimum LSF curve

is regarded as the predictable part [31]. xUV(t) determined in

Step IV is extended to the prediction range.

Setting up the incidence data for the analysis

The monthly incidence data of influenza (N = 612) are

plotted in Fig. 1a. The histogram of the incidence data

(Fig. 1a0) is apart from the normal distribution required for

conventional spectral analysis. Thus, first, we carried out

logarithmic transformation of the incidence data, where

122 zero values were replaced by small positive random

values. Next, the long-term oscillatory trend of the log-data

was removed by the LSM. As a result, the residual data

were obtained (Fig. 1b). The frequency histogram for the

residual data (Fig. 1b0) approximates to the normal

Fig. 1 Monthly incidence data of influenza in Japan from January

1948 to December 1998: a the original data; a0 histogram of the

original data; b the residual data, obtained by subtracting the least

squares fitting (LSF) curve from the logarithmically transformed

original data; b0 histogram of the residual data. Small vertical lines in

b indicate the boundaries of phase I (January 1948–December 1979)

and phase II (January 1980–December 1996)
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distribution required for conventional spectral analysis.

The details of the procedure for setting up the incidence

data (Fig. 1a) for the analysis are discussed in our previous

work [27].

Setting up the prediction and analysis ranges

of the incidence data of influenza

In our preceding work [27], it was confirmed that the

periodic structures of the residual data (Fig. 1b) during

1948–1979 and the data during 1980–1998 were different

from each other. It was considered that this difference was

due to the occurrence of two influenza pandemics (‘‘Asian

flu’’ in the year 1957 and ‘‘Hong Kong flu’’ in the year

1968/1969) and the start of vaccine programs in 1962 and

1976. Thus, in the present study, we divided the residual

data (Fig. 1b) into two ranges (phases I and II) and set the

boundary of the residual data at the end of 1979 as phase I

(January 1948–December 1979) and phase II (January

1980–December 1996). By calculating xUV(t) of the

residual data in phase I and phase II, we attempted to

predict the residual data during January 1980–December

1981 and that during January 1997–December 1998,

respectively.

Results

Periodic structure of the incidence data in the analysis

range

The PSDs, P(f)’s (f frequency), for the residual data in the

analysis ranges of phases I and II were calculated. The semi-

log plots of the PSDs (f B 2.2) are shown in Fig. 2a and b for

phases I and II, respectively (unit of f: 1/year). For both

phases, many well-defined spectral lines are clearly

observed as dominant peaks in Fig. 2. Ten spectral peak-

frequency modes were selected, in descending order of the

power of the spectral peak, and these are summarized, with

the corresponding periods and intensities (powers) of the

spectral peaks, in Table 1. We calculated the powers of the

PSD from integrating the PSD over the peak area.

As seen in Fig. 2, the common prominent peaks are

observed at f = 1.0 (1 year) corresponding to an annual

cycle of epidemics in both PSDs. In the PSD for phase I

(Fig. 2a), the spectral line at f = 0.08 (12.18-year) may be

related to the interval between the influenza pandemics in

1957 and 1968.

Fig. 2 Power spectral density (PSD) obtained by maximum entropy

method (MEM) spectral analysis for two ranges of the residual data

(f \ 2.2): a phase I (January 1948–December 1979) and b phase II

(January 1980–December 1996)

Table 1 Characteristics of the

ten dominant spectral peaks

shown in Fig. 2

a The assigned fundamental

modes

Phase I (1948–1979) Phase II (1980–1996)

f Period (year) Power f Period (year) Power

0.12 8.70a 0.25 0.10 10.35 0.05

0.26 3.81a 0.28 0.32 3.13 0.06

0.31 3.23 0.17 0.38 2.65 0.03

0.36 2.80 0.13 0.47 2.11 0.06

0.43 2.31a 0.33 0.63 1.60 0.06

0.64 1.56 0.14 0.72 1.39a 0.11

0.84 1.19 0.11 0.80 1.25 0.02

0.88 1.14 0.16 0.90 1.11 0.03

1.00 1.00a 3.20 1.00 1.00a 6.04

1.19 0.84 0.15 2.00 0.50 0.46
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Determination of fundamental modes

The trends of the contribution ratio against the value of

S are shown in Fig. 3a and b for phases I and II, respec-

tively. The value of the contribution ratio of each S value is

listed in Table 2, shown as ‘a’ for phase I and ‘b’ for phase

II. For phase I (Fig. 3a; Table 2 [a]), the contribution ratios

from S = 1 to S = 5 in the prediction range kept large

values of around 0.6, and the values were almost the same

as those in the analysis range. The contribution ratio at

S = 4 in the prediction range had the largest value (Table 2

[a]). Thus, we assigned four periodic modes, constructing

xUV(t) at S = 4 (8.70, 3.81, 2.31, and 1.00 years, as listed

in Table 1). The values of the contribution ratio at S = 4 in

the analysis and prediction ranges were 0.714 and 0.658,

respectively (Table 2 [a]).

For phase II (Fig. 3b; Table 2 [b]), the contribution ratios

in the analysis and prediction ranges kept large values of

around 0.8–0.9 for all S values. The contribution ratio at S = 2

in the prediction range had the largest value. Thus, two peri-

odic modes could be assigned as fundamental modes for the

LSF curve at S = 2 (1.39 and 1.00 years, as listed in Table 1).

The values of the contribution ratio at S = 2 in the analysis

and prediction ranges were 0.852 and 0.874, respectively.

Calculation of the LSF curve

The optimum LSF curves calculated with the fundamental

modes, xUV(t), are shown in Fig. 4a and b for phases I and

II, respectively. For phase I (Fig. 4a), xUV(t) basically

reproduces the underlying variation of {xA(t)}, but large

deviations between xUV(t) and {xA(t)} were observed in the

range of 1960–1963, for example. For phase II (Fig. 4b),

xUV(t) fairly well reproduces the underlying variation of

{xA(t)}. The values of period, amplitude and time of

acrophase for the fundamental modes are listed in Table 3.

Prediction of the incidence of influenza

xUV(t) for phase I was extended from the analysis range

(January 1948–December 1979) to the prediction range

(January 1980–December 1981). As seen in Fig. 5a,

Fig. 3 Contribution ratios in the analysis and prediction ranges (filled
circles and multiplication symbols, respectively): a phase I (January

1948–December 1979) and b phase II (January 1980–December

1996)

Table 2 The values of the

contribution ratios shown in

Fig. 3a,b

Number of

periodic mode

(a) Contribution ratio (b) Contribution ratio

Analysis range Prediction range Analysis range Prediction range

January 1948–

December 1979

January 1980–

December 1981

January 1980–

December 1996

January 1997–

December 1998

1 0.605 0.648 0.839 0.865

2 0.643 0.648 0.852 0.874

3 0.692 0.641 0.856 0.862

4 0.714 0.658 0.861 0.867

5 0.732 0.648 0.865 0.862

6 0.753 0.643 0.869 0.852

7 0.768 0.605 0.881 0.858

8 0.780 0.602 0.875 0.832

9 0.785 0.630 0.877 0.862

10 0.798 0.631 0.877 0.852
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xUV(t) in the prediction range reproduces the underlying

variation of the residual data well to allow the inclusion of

95% confidence intervals.

In phase II (Fig. 5b), xUV(t) extended from the analysis

range (January 1980–December 1996) to the prediction

range (January 1997–December 1998) fits within the 95%

confidence interval, reproducing the underlying variation

of the residual data well. For both phases I and II, almost

all data points of the residual data fit within the

95% confidence interval (CI) tested by t distribution,

x(t) = Y(t) ± t0.05s, where Y(t) is given by the estimated

regression line by the plotting of xUV(t) against {xP(t)}, and

s indicates standard error.

Effect of the long-term trend and data-length

of analysis range of the incidence data on prediction

analysis

To predict the residual data during January 1997–Decem-

ber 1998, we further investigated the value of the

contribution ratio for the longer length of analysis range of

the residual data: January 1948–December 1996. For this

case, Fig. 6a indicates the contribution ratio versus S. The

contribution ratios of the residual data in the analysis range

had large values of around 0.7–0.8 for all S values, but the

values were smaller than those in the shorter length of

analysis range of the residual data, January 1980–Decem-

ber 1996, shown in Fig. 3b. In addition, we investigated

the contribution ratio for the log-data that included the

Fig. 4 Comparison of the

optimum LSF curve (solid lines)

with the residual data (dotted
lines) in the analysis range:

a phase I (January 1948–

December 1979) and b phase II

(January 1980–December 1996)

Table 3 Parameters of fundamental modes

Period

(year)

Amplitude Time of

acrophase

Phase I (1948–1979) 8.70 0.65 09 March 1949

3.81 0.82 21 January 1950

2.31 0.75 23 May 1948

1.00 2.47 21 March 1948

Phase II (1980–1996) 1.39 0.52 26 May 1980

1.00 3.49 23 February 1980
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long-term trend [27]. In this case, as seen in Fig. 6b, the

values of the contribution ratio of the log-data in the

analysis range (1948–1996) gradually increase as the value

of S increases and keep large values of around 0.6–0.8, but

the values are smaller than the those for the residual data in

the analysis range (Fig. 3b). Thus, it can be said that

removing the long-term trend of the log-data conducted in

Step I and dividing the residual data into two phases are

appropriate approaches in conducting prediction analysis

for the incidence data of influenza.

Long-term predictability of influenza epidemics

For investigating the predictability of influenza incidence,

we analyzed the weekly incidence data of influenza from

January 1987 to October 2010 (Fig. 7a). Using the same

procedure as that used for the monthly data, we set up the

weekly data (Fig. 7a) for analysis. We obtained the resid-

ual data (Fig. 7b: dotted line) and divided the data into an

analysis range (January 1987–December 1996) and a pre-

diction range (January 1997–October 2010). The curve of

the contribution ratio against S for the residual data in the

analysis and prediction ranges is shown in Fig. 7c (filled

circles and open circles, respectively). The contribution

ratio of each S value is listed in Table 4. The contribution

ratio in the prediction range increases with increasing S,

but is smaller than the contribution ratio in the analysis

range for all S values. Thus, we could not find the optimum

value of S which would have been suitable to use for cal-

culating the LSF curve. Thus, for the residual data

(Fig. 7b), we investigated the contribution ratio versus

S for a shorter-term prediction range (January 1997–

December 1998) within the prediction range (January

1997–October 2010). The result obtained is shown in

Fig. 7c (multiplication symbol) and Table 4. The contri-

bution ratio gradually increases in the region of small

S from 1 to 4 and the contribution ratio approximates to a

constant in the region of S from 5 to 8. At S = 4, the

contribution ratio in the prediction range has the largest

Fig. 5 Comparison of the optimum LSF curve (solid lines) with the

residual data (dotted lines) in the prediction range: a phase I (January

1980–December 1981) and b phase II (January 1997–December

1998). Gray lines: 95% confidence interval

Fig. 6 Two cases of the trend of the contribution ratio for prediction

of the residual data during January 1997–December 1998 (filled
circles and multiplication symbols, respectively): a the case that the

residual data during January 1948–December 1996 is used for the

analysis range. b The case that the log-data, including long-term

trend, during January 1948–December 1996 is used for the analysis

range
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value (0.90, as listed in Table 4). Thus, the four periodic

modes used for the LSF curve could be assigned as fun-

damental modes at S = 4 (7.69, 2.31, 1.00, and 0.50 years).

The LSF curve calculated with the four fundamental modes

is shown in Fig. 7b (solid line). In the figure, it can be

confirmed that the extension of the LSF curve to the pre-

diction range (January 1997–October 2010) indicates short-

term predictability; that is, the LSF curve reproduces the

Fig. 7 Weekly incidence data

of influenza in Japan from

January 1987 to October 2010:

a the original data,

b comparison of the LSF curve

(solid line) and the residual data

of the original data (dotted line).

Small vertical line indicates the

boundary between the analysis

and prediction ranges. Gray
lines: 95% confidence interval.

c Contribution ratios in the

analysis range (January

1987–December 1996),

prediction range (January

1997–October 2010), and

shorter-term prediction range

(January 1997–December 1998)

(filled circles, open circles, and

multiplication symbols,

respectively)
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underlying variation of the residual data (dotted line) in the

shorter-term prediction range (January 1998–December

1999). The reason for this short-term predictability can be

considered as follows: the underlying variation of the

residual data in the prediction range (January 1997–October

2010) is different temporally from that in the analysis range

(January 1987–December 1996).

Discussion

In the present study, we investigated periodic structures of

the incidence of influenza in Japan by using MEM spectral

analysis. We successfully assigned the fundamental modes

constructing the underlying variations of the incidence data

in the analysis range xUV(t) (Eq. 2) (Table 1). As a result,

we obtained xUV(t) with good fitness to the original inci-

dence data x(t) (Fig. 4a, b), although some prominent peaks

in phase I could not be reproduced well. This disagreement

between xUV(t) and x(t) (Fig. 4a) is thought to mean that

the underlying variation in phase I is temporally different

because of the effects of the introduction of vaccine pro-

grams (in 1962 and 1976) and the effects of influenza

pandemics (in 1957 and 1968).

The dominant spectral line at the 8.7-year period in the

PSD for phase I (Fig. 2a; Table 1) is approximately

consistent with the period in Scotland, that is, an 8.0-year

period [32]. It is widely accepted that many infectious

diseases show a certain periodicity in prevalence. For

example, the biennial cycle of measles epidemics has long

attracted the attention of epidemiologists and mathemati-

cal biologists [33, 34]. So far, researchers have suggested

that such periodicities in measles epidemics might be

caused by extrinsic factors, as reflected in periodic

transmission rates, e.g., seasonality, or they may be

caused by time delays, age structure, or non-seasonality in

incidence rates [35]. The periodic modes of 8.7 years

assigned for influenza in the present study may be

explained by the dynamics of pandemics (in 1957 and

1968) and epidemics of influenza [36]. That is, after a

major antigenic shift resulting in a pandemic, increasing

numbers of members of a population come to posses

the appropriate antibodies, and subsequent epidemics,

decreasing in intensity and occurring at increasing inter-

vals, are due to minor antigenic changes. Eventually

another major antigenic shift occurs, and the cycle is

repeated. It is notable that, for phases I and II in our

study, dominant spectral lines were observed at frequen-

cies corresponding to periodic modes around 2–4 years, as

listed in Table 1 (3.81 and 2.31 years for phase I and 3.13

and 2.11 years for phase II, for example). Based on the

study of Plotkin et al. [37], it can be considered that

periodic modes around 2–4 years for phases I and II

might correspond to the average duration of cross-reactive

immunity against the influenza A virus.

In the present study, the precise determination of fun-

damental modes constructing the underlying variations of

the incidence data of influenza enabled us to conduct pre-

diction analysis (Figs. 5, 7). The prediction curve of the

incidence data could be quantitatively indicated by the

extension of xUV(t) to the prediction range. This repro-

ducibility for the incidence data was considered to have

come about for the following reason: the fundamental

modes constructing xUV(t) (Table 1) were substantially

well assigned by MEM spectral analysis and reconstruct

the periodic structure of the underlying variation of the data

in the prediction range. It is anticipated that the present

method of time series analysis consisting of MEM spectral

analysis and LSM will contribute to further development in

the field of prediction analysis of epidemics of influenza.
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Table 4 The values of the

contribution ratios shown in

Fig. 7

Number of

periodic mode

Contribution ratio

Analysis range Prediction range Shorter-term

prediction range

January 1987–

December 1996

January 1997–

October 2010

January 1997–

December 1998

1 0.856 0.574 0.840

2 0.880 0.586 0.872

3 0.893 0.580 0.893

4 0.900 0.582 0.900

5 0.903 0.580 0.888

6 0.921 0.598 0.885

7 0.924 0.596 0.882

8 0.925 0.596 0.888
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Appendix

On maximum entropy method (MEM) spectral analysis

The power spectral density (PSD) obtained by MEM

spectral analysis for time series data under analysis, with

equal sampling interval Dt (=1 month, in the present

study), can be calculated from

Pmðf Þ ¼
PmDt

1þ
Pm

k¼�m

cm;k exp �i2pfkDt½ �
����

����
2
; ðA1Þ

where Pm is the output power of a prediction-error filter of

order m and cm,k the corresponding filter coefficient,

m = 0, 1, 2,…, M; M is the optimum filter order. Pm and

cm,k are determined by solving the following Yule-Walker

equations with the use of Burg’s procedure:

C0 C1 � � � Cm

C1 C0 � � � Cm�1

..

. ..
. . .

. ..
.

Cm Cm�1 � � � C0

2
6664

3
7775

1

cm;1

..

.

cm;m

2
6664

3
7775 ¼

Pm

0

..

.

0

2
664

3
775; ðA2Þ

where Ck (k = 0, 1, …, m) is autocorrelation function of

time series data {x(kDt)} described by

Ck ¼
1

N

XN�jkj

i¼1

fxðiþ kÞ � lgfxðiÞ � lg; ðA3Þ

where l is the mean value of time series data, and N the

length of time series data. By setting m = M, we obtain

P(f) (=PM(f)) from Eq. A1.

On the determination of the value of M

In the present study, the value of M for the residual data

was determined on the basis of the investigation of the lag

dependence of MEM-estimated periods. The large value of

M for calculating MEM–PSD is necessary for extracting

the fundamental mode from the time series data, and

recently this has been supported theoretically [38].

On the determination of the value

of the ‘‘contribution ratio’’

The determination of S in Eq. 2 is made via the following

procedure. Based on the result of periods estimated by

MEM spectral analysis, we must assign fundamental

modes fn that construct the periodic structure of xUV(t) of

{xA(t)} (Eq. 2). Then, we investigate the contribution of

ten dominant periods estimated by MEM spectral analysis

to the LSF curve in the analysis and prediction ranges: (a)

the LSF curve in the analysis range is calculated with the

variation S, by the ten modes being added to the LSF curve

one by one in the order of magnitude of the power of the

spectral peak frequency, (b) the LSF curve calculated with

each S is extended to the prediction range, and (c) the

evaluation of the LSF curve is performed. Procedure (c) is

divided into four steps [(c)-1, (c)-2, (c)-3, and (c)-4]. In

procedure (c)-1, the power of each periodic mode is eval-

uated by the square of amplitude, Ai
2, of the ith mode

constituting the LSF curve [28]. In procedures (c)-2 and

(c)-3, we estimate Rj corresponding to the power of time

series, which is obtained by subtracting the LSF curve from

the original time series. As a result, the total powers of the

original time series in the analysis and prediction ranges

(QA and QP, respectively) are obtained by

Qj ¼
XS

i¼1

A2
i þ Rj; j ¼

A : analysis range

P : prediction range

(
ðA4Þ

When both sides of Eq. A4 are divided by Qj, we obtain

the following normalized relation:

PS
i¼1 A2

i

Qj
þ Rj

Qj
¼ 1; j ¼

A : analysis range

P : prediction range

(
ðA5Þ

where
PS

i¼1 A2
i

.
Qj and Rj

�
Qj correspond to the contri-

bution of
PS

i¼1

A2
i and Rj to Qj, respectively. Then, in pro-

cedure (c)-4, we define the first term of the left-hand side of

Eq. A5, the ‘‘contribution ratio’’, which means the contri-

bution
PS

i¼1

A2
i normalized by Qj. If

PS
i¼1 A2

i

.
Qj in the first

term becomes large, then the second term Rj/Qj becomes

small.
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cholera incidence to El Ninõ and solar activity elucidated by

time-series analysis. Epidemiol Infect. 2009;19:1–9.

21. Sumi A, Ohtomo N, Tanaka Y. Study on chaotic characteristics

of incidence data of measles. Jpn J Appl Phys. 1997;36:7460–72.

22. Sumi A, Ohtomo N, Tanaka Y, Koyama A, Saito K. Compre-

hensive spectral analysis of time series analysis of time series

data of recurrent epidemics. Jpn J Appl Phys. 1997;36:1303–18.

23. Sumi A, Olsen LF, Ohtomo N, Tanaka Y, Sawamura S. Spectral

study of measles epidemics: the dependence of spectral gradient

on the population size of the community. Jpn J Appl Phys.

2003;42:721–33.

24. Sumi A, Ohtomo N, Tanaka Y, Sawamura S, Olsen LF, Kobay-

ashi N. Prediction analysis for measles epidemics. Jpn J Appl

Phys. 2003;42:7611–20.

25. Sumi A. Time series analysis of surveillance data of infectious

diseases in Japan. Hokkaido J Med Sci. 1998;73:343–63.

26. Cliff A, Haggett P, Smallman-Raynor M. Measles: an historical

geography of a major human viral disease from global expansion

to local retreat, 1840–1990. Oxford: Blackwell; 1993.

27. Sumi A, Kamo K, Ohtomo N, Mise K, Kobayashi N. Time series

analysis of incidence data of influenza in Japan. J Epidemiol.

2011;21:21–9.

28. Statistics and Information Department, Minister’s Secretariat,

Ministry of Health and Welfare in Japan. Statistics of commu-

nicable diseases. Tokyo: Health and Welfare Statistics Associa-

tion; 1968–1999 (in Japanese).

29. National Institute of Infectious Diseases. Infectious diseases

weekly report. http://idsc.nih.go.jp/idwr/index.html (1987–2009).

Accessed 9 May 2011 (in Japanese).

30. Armitage P, Berry G, Matthews JNS. Statistical methods in

medical research. 4th ed. Oxford: Blackwell, Science; 2002.

31. Gershenfeld NA, Weigend AS. The future of time series: learning

and understanding. In: Weigend AS, Gershenfeld NA, editors.

Time series prediction: forecasting the future and understanding

the past. New York: Addison-Wesley; 1994. p. 1–70.

32. Clegg EJ. Infectious disease mortality in two Outer Hebridean

islands: 1. measles, pertussis and influenza. Ann Hum Biol.

2003;30:455–71.

33. Anderson RM, Grenfell BT, May RM. Oscillatory fluctuations in

the incidence of infectious disease and the impact of vaccination:

time series analysis. J Hyg Camb. 1984;93:587–608.

34. Noah ND. Cyclic patterns and predictability in infection. J Hyg

Camb. 1989;102:175–90.

35. Anderson RM, May RM. Infectious diseases of humans:

dynamics and control. London: Oxford University Press; 1991.

36. Kilbourne ED. Epidemiology of influenza. In: Kilbourne ED,

editor. The influenza viruses and influenza. New York: Academic

Press; 1973. p. 483–538.

37. Plotkin JB, Dushoff J, Levin SA. Hemagglutinin sequence clus-

ters and the antigenic evolution of influenza A virus. Proc Natl

Acad Sci USA. 2002;99:6263–8.

38. Tokiwano K, Ohtomo N, Tanaka Y. Saidai Entropy-ho ni-yoru

Jikeiretsu Kaiseki: Memcalc no Riron to Jissai (Time series

analysis by maximum entropy method: theory and practice of

MemCalc). Sapporo: Hokkaido University Press; 2002. (in

Japanese).

108 Environ Health Prev Med (2012) 17:98–108

123

http://idsc.nih.go.jp/idwr/index.html

	MEM spectral analysis for predicting influenza epidemics in Japan
	Abstract
	Objectives
	Methods
	Results
	Conclusions

	Introduction
	Materials and methods
	Incidence data
	Time series analysis
	Theoretical background
	Step I: Setting up the incidence data for analysis
	Step II: Determination of fn (spectral analysis)
	Step III: Determination of the fundamental modes and the value of S
	Step IV: Determination of a0, an, and bn (LSM)
	Step V: Prediction of the incidence

	Setting up the incidence data for the analysis
	Setting up the prediction and analysis ranges of the incidence data of influenza

	Results
	Periodic structure of the incidence data in the analysis range
	Determination of fundamental modes
	Calculation of the LSF curve
	Prediction of the incidence of influenza
	Effect of the long-term trend and data-length of analysis range of the incidence data on prediction analysis
	Long-term predictability of influenza epidemics

	Discussion
	Acknowledgments
	Appendix
	On maximum entropy method (MEM) spectral analysis
	On the determination of the value of M
	On the determination of the value of the ‘‘contribution ratio’’

	References


