Skip to main content
  • Review
  • Published:

The endocrine disruptive effects of mercury

Abstract

Mercury, identified thousands of years ago is one of the oldest toxicants known. The endocrine disruptive effects of mercury have recently become one of the major public concerns. In this report, the adverse effects of mercury on the hypothalamus, pituitary, thyroid, adrenal gland, and gonads (testis and ovary) in laboratory animals as well as in humans are reviewed. The effects of both environmental and occupational exposures to organic, inorganic, or metallic mercury are explained. There is sufficient evidence from animal studies supporting the disruptive effects of mercurials on the functions of the thyroid, adrenal, ovary, and testis, although several factors make it difficult to extrapolate the animal data to the human situation. However, the human studies performed so far, which focused mainly on serum hormone levels, failed to provide any conclusive data to confirm the findings from the animal studies. Therefore, further well-designed epidemiological studies are urgently needed. The possible mechanisms of the toxic effects are also discussed. The broad enzyme inhibition and the influence on the combining of hormones by their receptors, which seem due to its avid binding to sulphydryl, may account for the primary mechanism. The interference with intracellular calcium metabolism, and peroxidation may also be involved.

References

  1. Bitman J, Cecil HC. Estrogenic activity of DDT analogs and polychlorinated biphenyls. J Agr Food Chem 1970; 18: 1108–12.

    Article  CAS  Google Scholar 

  2. Nelson JA, Struck RF, James R. Estrogenic activities of chlorinated hydrocarbons. J Toxicol Environ Health 1978; 4: 325–39.

    PubMed  CAS  Google Scholar 

  3. Mclachlan JA. Estrogens in the environment. Amsterdam: Elsevier, 1980.

    Google Scholar 

  4. Mclachlan JA. Estrogens in the environment. II: Influence on Development. Amsterdam: Elsevier, 1985.

    Google Scholar 

  5. Mclachlan JA, Korach KS. Symposium on estrogens in the environment, II. Environ Health Perspect 1995; 103 (Suppl 7): 3–4.

    PubMed  Google Scholar 

  6. Kavlock RJ, Daston GP, DeRosa C, et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: A report of the U.S. EPA-sponsored workshop. Environ Health Perspect 1996; 104 (Suppl 4): 715–40.

    Article  PubMed  Google Scholar 

  7. Ankley GT, Johnson RD, Detenbeck NE, Bradbery SP, Toth G, Folmer LC. Development of a research strategy for assessing the ecological risk of endocrine disruptors. Rev Toxicol Ser B: Environ Toxicol 1997; 1: 231–67.

    Google Scholar 

  8. Crisp TM, Clegg ED, Cooper RL, et al. Environmental endocrine disruption: An effect assessment and analysis. Environ Health Perspect 1998; 106 (Suppl 1): 11–56.

    Article  PubMed  CAS  Google Scholar 

  9. Shinsuke Tanabe. Endocrine disrupting chemicals-what is the problem? Iwanami booklet No.456 Tokyo: Iwanamishoten, 1998.

    Google Scholar 

  10. World Health Organization. Environmental Health Criteria 118, Inorganic Mercury. Geneva: WHO, 1991.

    Google Scholar 

  11. Kosta L, Byrne AR, Zelenko V. Correlation between selenium and mercury in man following exposure to inorganic mercury. Nature 1975; 254: 238–9.

    Article  PubMed  CAS  Google Scholar 

  12. Khayat A, Dencker L. Whole body and liver distribution of inhaled mercury in the mouse: Influence of ethanol and aminotriazole pretreatment. J Appl Toxicol 1983; 1: 66–74.

    Article  Google Scholar 

  13. Nylander M. Mercury in pituitary glands of dentists. Lancet 1986; I: 442.

    Article  Google Scholar 

  14. Danscher G, Horsted-Bindslev P, Rungby J. Traces of mercury in organs from primates with amalgam fillings. Exp Mol Pathol 1990; 52: 291–9.

    Article  PubMed  CAS  Google Scholar 

  15. Moller-Madsen B, Danscher G. Localization of mercury in CNS of the rat. IV. The effect of selenium on orally administered organic and inorganic mercury. Toxicol Appl Pharmacol 1991; 108:457–73.

    Article  PubMed  CAS  Google Scholar 

  16. Ernst E, Christensen MK, Poulsen EH. Mercury in the rat hypothalamic arcuate nucleus and median eminence after mercury vapor exposure. Exp Mol Pathol 1993; 58: 205–14.

    Article  PubMed  CAS  Google Scholar 

  17. Vahter ME, Mottet NK, Friberg LT, Lind SB, Charleston JS, Burbacher TM. Demethylation of methyl mercury in different brain sites of Macaca fascicularis monkeys during long-term subclinical methyl mercury exposure. Toxicol Appl Pharmacol 1995; 134: 273–84.

    Article  PubMed  CAS  Google Scholar 

  18. Lamperti A, Niewenhuis R. The effects of mercury on the structure and function of the hypothalamo-pituitary axis in the hamster. Cell Tissue Res 1976; 170: 315–24.

    Article  PubMed  CAS  Google Scholar 

  19. Lach H, Srebro Z, Dziubek K, Krawczyk S, Szaroma W. The influence of mercury and lead compounds on the circadian rhythm of cytoplasmic RNA in hypothalamic neurons of mice. Folia Histochem Cytochem (Krakow) 1983; 21: 3–4.

    Google Scholar 

  20. Chan A, Webb RM, Yang CM, Jin CB. The effect of estrogen on luteinizing hormone-releasing hormone binding sites in hypothalamic membranes. Neuropharmacology 1987; 26: 1395–401.

    Article  PubMed  CAS  Google Scholar 

  21. Thorlacius-Ussing O, Moller-Madsen B, Danscher G. Intracellular accumulation of mercury in the anterior pituitary of rats exposed to mercury chloride. Exp Mol Pathol 1985; 42: 278–86.

    Article  PubMed  CAS  Google Scholar 

  22. Moller-Madsen B, Thorlacius-Ussing O. Accumulation of mercury in the anterior pituitary of rats following oral intraperitoneal administration of methyl mercury. Virchows Arch [Cell Pathol] 1986; 51: 303–11.

    Article  CAS  Google Scholar 

  23. Nylander M. Relation between mercury and selenium in pituitary glands of dental staff. Bri J Ind Med 1989; 46: 751–2.

    CAS  Google Scholar 

  24. Danscher GP, Horstedt-Bindslev P, Rungby J. Traces of mercury in organs from primates with amalgam fillings. Exp Mol Pathol 1990; 52: 291–9.

    Article  PubMed  CAS  Google Scholar 

  25. Kanabrocki EL, Greco J, Graham LA, et al. Trace elememts in human pituitary. Int J Nucl Med Biol 1976; 3: 73–6.

    Article  PubMed  CAS  Google Scholar 

  26. Nylander M, Friberg L, Eggleston D, Bjerkman L. Mercury accumulation in tissues from dental staff and controls in relation to exposure. Swed Dent J 1989; 13: 235–43.

    PubMed  CAS  Google Scholar 

  27. Langworth S, Rojmark S, Akesson A. Normal pituitary hormone response to thyrotrophin releasing hormone in dental personnel exposed to mercury. Swed Dent J 1990; 14: 101–3.

    PubMed  CAS  Google Scholar 

  28. Erfurth EM, Schutz A, Nilsson A, Barregard L, Skerfving S. Normal pituitary hormone response to thyrotrophin and gonadotrophin releasing hormones in subjects exposed to elemental mercury vapour. Bri J Ind Med 1990; 47: 639–44.

    CAS  Google Scholar 

  29. McGregor AJ, Mason HI. Occupational mercury vapour exposure and testicular, pituitary and thyroid endocrine function. Hum Exp Toxicol 1991; 10: 199–203.

    PubMed  CAS  Google Scholar 

  30. Barregard L, Lindstedt G, Schutz A, Sallsten G. Endocrine function in mercury exposed chloralkai workers. Occup Environ Med 1994; 51: 536–40.

    PubMed  CAS  Google Scholar 

  31. Ghosh N, Bhattachara S. Thyrotoxicity of chlorides of cadmium and mercury in rabbit. Biomed Environ Sci 1992; 5:236–40.

    PubMed  CAS  Google Scholar 

  32. Goldman M, Blackburn P. The effect of mercuric chloride on thyroid function in the rat. Toxicol Appl Pharmacol 1979; 48 (1 pt 1): 49–55.

    Article  PubMed  CAS  Google Scholar 

  33. Kawada J, Nishida M, Yoshimura Y, Mitani K. Effects of organic and inorganic mercurials on thyroidal functions. J Pharmacobiodyn 1980; 3: 149–59.

    PubMed  CAS  Google Scholar 

  34. Nishida M, Yamamoto T, Yoshimura Y, Kawada J. Subacute toxicity of methylmercuric chloride and mercuric chloride on mouse thyroid. J Pharmacobiodyn 1986; 9: 331–8.

    PubMed  CAS  Google Scholar 

  35. Chopra IJ. A study of extrathyroidal conversion of thyroxine (T4) to 3,315-triiodothyronine (T3) in vitro. Endocrinology 1977; 101:453–63.

    PubMed  CAS  Google Scholar 

  36. Sin YM, Teh WF, Wong MK, Reddy PK. Effect of mercury on glutathione and thyrod hormones. Bull Environ Contam Toxicol 1990;44:616–22.

    Article  PubMed  CAS  Google Scholar 

  37. Sin YM, Teh WF. Effect of long-term uptake of mercuric sulphide on thyrod hormones and glutathione in mice. Bull Environ Contam Toxicol 1992; 49: 847–54.

    Article  PubMed  CAS  Google Scholar 

  38. Rasmussen BL, Thorlacius-Ussing O. Ultrastructural localization of mercury in adrenals from rats exposed to methyl mercury. Virchows Arch B Cell Pathol Incl Mol Pathol 1987; 52: 529–38.

    Article  PubMed  CAS  Google Scholar 

  39. Khayat A, Dencker L. Organ and cellular distribution of inhaled metallic mercury in the rat and Marmoset monkey (callithrix jacchus): Influence of ethyl alcohol pretreatment. Acta Pharmacol Toxicol (Copenh) 1984; 55: 145–52.

    CAS  Google Scholar 

  40. Thaxton P, Parkhurst CR, Cogbern LA, Young PS. Adrenal function in chickens experiencing mercury toxicity. Poult Sci 1975; 54: 578–84.

    PubMed  CAS  Google Scholar 

  41. Kirubagaran R, Joy KP. Changes in adrenocortical-pituitary activity in the catfish, Clarias batrachus (L.), after mercury treatment. Ecotoxicol Environ Sat 1991; 22: 36–44.

    Article  CAS  Google Scholar 

  42. Burton GV, Meikle AW. Acute and chronic methyl mercury poisoning impairs rat adrenal and testicular function. J Toxicol Environ Health 1980; 6: 597–606.

    Article  PubMed  CAS  Google Scholar 

  43. Hontela A, Rasmussen JB, Audet C, Chevalier G. Impaired cortisol stress response in fish from environments polluted by PAHs, PCBs, and mercury. Arch Environ Contam Toxicol 1992; 22: 278–83.

    Article  PubMed  CAS  Google Scholar 

  44. Grady RR, Kitay JI, Spyker JM, Avery DL. Postnatal endocrine dysfunction induced by prenatal methylmercury or cadmium exposure in mice. J Environ Pathol Toxicol 1978; 1: 187–97.

    PubMed  CAS  Google Scholar 

  45. Nishiyama S, Nakamura K, Ogawa M. Effects of heavy metals on corticosteroid production in cultured rat adrenolcortical cells. Toxicol Appl Pharmacol 1985; 81: 174–6.

    Article  PubMed  CAS  Google Scholar 

  46. Ng TB, Liu WK. Toxic effect of heavy metals on cells isolated from the rat adrenal and testis. In Vitro Cell Biol 1990; 26: 24–8.

    Article  CAS  Google Scholar 

  47. Veltman JC, Maines MD. Alterations of heme, cytochrome P-450, and steroid metabolism by mercury in rat adrenal. Arch Biochem Biophys 1986; 248: 467–78.

    Article  PubMed  CAS  Google Scholar 

  48. Freeman HC, Sangalang G, Uthe JF, Ronal K. Steroidogenesis in vitro in the harp seal (Pagophilus groenlandicus) without and with methyl mercury treatment in vivo. Environ Physiol Biochem 1975; 5: 428–39.

    PubMed  CAS  Google Scholar 

  49. Freeman HC, Sangalang G. A study of the effects of methyl mercury, cadmium, arsenic, selenium, and PCB, (Aroclor 1254) on adrenal and testicular steroidogeneses in vitro, by the gray seal Halichoerus grypus. Arch Environ Contam 1977; 5: 369–83.

    Article  CAS  Google Scholar 

  50. Hart DT, Borowitz JL. Adrenal catecholamine release by divalent mercury and cadmium. Arch Int Pharmacodyn Ther 1974;209:94–9.

    PubMed  CAS  Google Scholar 

  51. Borowitz JL. Mechanism of adrenal catecholamine release by divalent mercury. Toxicol Appl Pharmacol 1974; 28: 82–7.

    Article  PubMed  CAS  Google Scholar 

  52. Yamanaka K, Yamada S, Hayashi S, Hayashi E. Inhibition by chloromazine, metals and I-ascorbic acid of calcium-ATPase and magnesium-ATPase in bovine adrenal medullary microsome. Jpn J Pharmacol 1984; 34: 447–55.

    Article  PubMed  CAS  Google Scholar 

  53. Stadnicka A. Localization of mercury in the rat ovary after oral administration of mercuric chloride. Acta Histochem 1980; 67: 227–33.

    PubMed  CAS  Google Scholar 

  54. Lamperti AA, Printz RH. Localization, accumulation, and toxic effects of mercuric chloride on the reproductive axis of the female hamster. Biol Reprod 1974; 11: 180–6.

    Article  PubMed  CAS  Google Scholar 

  55. Vachhrajani KD, Chowdhury AR. Distribution of mercury and evaluation of testicular steroidogenesis in mercuric chloride and methylmercury administered rats. Indian J Exp Biol 1990; 28: 746–51.

    PubMed  CAS  Google Scholar 

  56. Yang JM, Jiang XZ, Chen QY, Li PJ, Zhou YF, Wang YL. The distribution of HgCl2 in rat body and its effects on fetus. Biomed Environ Sci 1996; 9: 437–42.

    PubMed  CAS  Google Scholar 

  57. Mclntyre JD. Toxicity of mercury for steelhead trout sperm. Bull Environ Contam Toxicol 1973; 9: 98–9.

    Article  Google Scholar 

  58. Kirubagaran R, Joy KP. Inhibition of testicular 3β-hydroxy-ɛ5-steroid dehydrogenase (3β-HSD) activity in catfish Clarias batrachus (L.) by mercurials. Indian J Exp Biol 1988; 26: 907–8.

    PubMed  CAS  Google Scholar 

  59. McNeil FI, Bhatnagar MK. Ultrastructure of the tesis of Pekin ducks fed methyl mercury chloride: Seminiferous epithelium. Am J Vet Res 1985; 46: 2019–25.

    PubMed  CAS  Google Scholar 

  60. Maretta M, Marettova E, Skrobanek P, Ledec M. Effect of mercury on the seminiferous epithelium of the fowl testis. Acta Vet Hung 1995; 43: 153–61.

    PubMed  CAS  Google Scholar 

  61. Khera KS. Reproductive capability of male rats and mice treated with methyl mercury. Toxicol Appl Pharmacol 1973; 24: 167–77.

    Article  PubMed  CAS  Google Scholar 

  62. Chowdhury AR, Arora U. Toxic effect of mercury on testes in different animal species. Indian J Physiol Pharmacol 1982; 26: 246–9.

    PubMed  CAS  Google Scholar 

  63. Lee IP, Dixon RL. Effects of mercury on spermatogenesis studied by velocity sedimentation cell separation and serial mating. J Pharmacol Exp Ther 1975; 194: 171–81.

    PubMed  CAS  Google Scholar 

  64. Evenson DP, Jost LK, Bear RK. Effects of methyl methanesulfonate on mouse sperm chromatin structure and testicular cell kinetics. Environ Mol Mutagen 1993; 21: 144–53.

    Article  PubMed  CAS  Google Scholar 

  65. Schulz O, Walzel R, Hacker U, Umlauft K. The influence of chemical noxae on the sperm quality of boars used for insemination. 2. Mercury. Arch Exp Veterinarmed 1988; 42: 610–7.

    CAS  Google Scholar 

  66. Mohamed MK, Burbacher TM, Mottet NK. Effects of methyl mercury on testicular functions in Macaca fascicularis monkeys. Pharmacol Toxicol 1987; 60: 29–36.

    PubMed  CAS  Google Scholar 

  67. Facemire CF, Gross TS, Guillette LJ. Reprouctive impairment in the Florida panther: Nature or nurture? Environ Health Perspect 1995; 103 (Suppl 4): 79–86.

    Article  PubMed  CAS  Google Scholar 

  68. Popescu HI. Poisoning with alkylmercury compounds. Br Med J 1978; 1: 1347.

    PubMed  CAS  Google Scholar 

  69. Hendry WF, A’Hern PR, Cole PJ. Was Young1s syndrome caused by exposure to mercury in chilhood? Br Med J 1993; 307: 1579–82.

    CAS  Google Scholar 

  70. Dally A, Hendry B. Declining sperm count. Increasing evidence that Young’s syndrome is associated with mercury. Br Med J 1996; 313: 44.

    CAS  Google Scholar 

  71. Alcer KH, Brix KA, Fine LJ, Kallenbach LR, Wolfe RA. zccupational mercury exposure and male reproductive health. Am J Ind Med 1989; 15: 517–29.

    Article  Google Scholar 

  72. Chia SE, Ong CN, Lee ST, Tsakok FH. Blood concentrations of lead, cadmium, mercury, zinc, and copper and human semen parameters. Arch Androl 1992; 29: 177–83.

    Article  PubMed  CAS  Google Scholar 

  73. Hanf V, Forstman A, Costea JE, Schieferstein G, Fischer I, Schweinsberg F. Mercury in urine and ejaculate in husbands of barren couples. Toxicol Lett 1996; 88: 227–31.

    Article  PubMed  CAS  Google Scholar 

  74. Mukherjee D, Kumar V, Chakraborti P. Effect of mercury chloride and cadmium chloride on gonadal function and its regulation in sexually mature common carp Cyprinus carpio. Biomed Environ Sci 1994; 7: 13–24.

    PubMed  CAS  Google Scholar 

  75. Reddy PS, Tuberty SR, Fingerman M. Effects of cadmium and mercury on ovarian maturation in the red swamp crayfish, Procambarus clarkii. Ecotoxicol Environ Safe 1977; 37: 62–5.

    Article  Google Scholar 

  76. Dey S, Bhattacharya S. Ovarian damages to Channa punctatus after chronic exposure to low concentrations of Elsan, mercury, and ammonia. Ecotoxicol Environ Sat 1989; 17: 247–57.

    Article  CAS  Google Scholar 

  77. Jagiello G, Lin JS. An assessment of the effects of mercury on the meiosis of mouse ova. Mutat Res 1973; 17: 93–99.

    PubMed  CAS  Google Scholar 

  78. Watanabe T, Shimada T. Endo A. Effects of mercury compounds on ovulation and meiotic and mitotic chromosomes in female hamsters. Teratology 1982; 25: 381–4.

    Article  PubMed  CAS  Google Scholar 

  79. Lamperti AA, Printa RH. Effects of mercuric chloride on the reproductive cycle of the female hamster. Biol Reprod 1973; 8:378–87.

    PubMed  CAS  Google Scholar 

  80. Rowland AS, Baird DD, Weiberg CR, Shore DL, Shy CM, Wilcox AJ. The effect of occupational exposure to mercury vapour on the fertility of female dental assistants. Occup Environ Med 1994; 51: 28–34.

    PubMed  CAS  Google Scholar 

  81. Fu WZ. Effect of mercury exposure on reproduction in female workers. Chung Hua Yu Fang I Hsueh Tsa Chih 1993; 27:347–9.

    PubMed  CAS  Google Scholar 

  82. Gerhard I, Monga B, Waldbrenner A, Runnebaum B. Heavy metals and fertility. J Toxicol Environ Health, Part A 1998; 54:593–611.

    Article  CAS  Google Scholar 

  83. Gerhard I, Runnebaum B. The limits of hormone substitution in pollutant exposure and fertility disorders. Zentralbl Gynakol 1992; 114: 593–602.

    PubMed  CAS  Google Scholar 

  84. Braaten JT, Jarlfors U, Smith D, Mintz D. Purification of monolayer cell cultures of the endocrine pancreas. Tissue Cell 1975; 7: 747–62.

    Article  PubMed  CAS  Google Scholar 

  85. George JM. Effect of mercury on response of isolated fat cells to insulin and lipolytic hormones. Endocrinology 1971; 89: 1489–98.

    PubMed  CAS  Google Scholar 

  86. Boadi WY, Shurtz-Swirski R, Barnea ER, Urbach J, Brandes JM, Yannai S. The influence of mercury on the secretion of human chorionic gonadotropin in superfused young placental tissue. Pharmacol Toxicol 1992; 71: 19–23.

    PubMed  CAS  Google Scholar 

  87. Chowdhury AR, Vachhrajani KD, Chatterjee BB. Inhibition of 3-bata-hydroxy- △5-steroid dehydrogenase in rat testicular tissue by mercuric chroride. Toxicol Lett 1995; 27: 45–9.

    Article  Google Scholar 

  88. Mondal S, Mukhopadhyay B, Bhattacharya S. Inorganic mercury binding to fish oocyte plasma membrane induces steroidogenesis and translatable messenger RNA synthesis. Biometals 1997; 10: 285–90.

    Article  PubMed  CAS  Google Scholar 

  89. Coty WA. Reversible dissociation of steroid hormone receptor complexes by mercurial reagent. J Bio Chem 1980; 255: 8035–8037.

    CAS  Google Scholar 

  90. Griest RE, Coty WA. Binding of the chicken oviduct progesterone receptor to steroid affinity resins: resistance to elution with mercurial reagent. J Steroid Biochem 1984; 21: 29–34.

    Article  PubMed  CAS  Google Scholar 

  91. Lundholm CE. Influence of chlorinated hydrocarbons, Hg2+ and methyl-H+ on steroid hormone receptors from eggshell gland mucosa of domestic fowls and ducks. Arch Toxicol 1991; 65: 220–7.

    Article  PubMed  CAS  Google Scholar 

  92. Brecher P, Pasquina A, Wotiz HH. Effect of metal ions on edtradiol binding to uterine nuclear receptors. Endocrinology 1969;85:612–4.

    PubMed  CAS  Google Scholar 

  93. Clifton GG, Pearce C, Elliot K, Wallian JD. Mercuric chloride inhibition of vasopressin release from the isolated neurointermediate lobe of the rat pituitary. Biochim Biophys Acta 1986; 887: 189–95.

    Article  PubMed  CAS  Google Scholar 

  94. Dyball REJ, Wright RJ. Inhibition of neurohypophysia hormone release from the isolated rat neural lobe by ferrous chloride in the incubation medium. J Endocrinol 1977; 75:327–8.

    Article  PubMed  CAS  Google Scholar 

  95. Clifton GG, Oelsner D, Anderson CR, Pearce CJ, Wallin JD. The effects of mercuric chloride on calmodulin-mediated Ca+2 tansport in rat brain. Am J Med Sci 1990; 299: 26–31.

    Article  PubMed  CAS  Google Scholar 

  96. Atchison WD, Hare NF. Mechanisms of methylmercury-induced neurotoxicity. FASEB 1994; 8: 622–9.

    CAS  Google Scholar 

  97. Huang YL, Cheng SL, Lin TH. Lipid peroxidation in rats administrated with mercuric chloride. Biol Trace Elem Res 1996; 52: 193–206.

    Article  PubMed  CAS  Google Scholar 

  98. Sarafian T, Verity MA. Oxidative mechanisms underling methyl mercury neurotoxicity. Int J Dev Neurosci 1991; 9: 147–53.

    Article  PubMed  CAS  Google Scholar 

  99. Kevorkian J, Cento DP, Hyland JR, Bagozzi WM, Hollebeke EV. Mercury content of human tissues during the twentieth century. Am J Pub Health 1972; 62: 504–13.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqiang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Kusaka, Y., Sato, K. et al. The endocrine disruptive effects of mercury. Environ Health Prev Med 4, 174–183 (2000). https://doi.org/10.1007/BF02931255

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931255

Key words