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Abstract

The immunological effects of asbestos exposure on various lymphocytes such as the regulatory T cell (Treg), responder
CD4+ T helper cell (Tresp), CD8+ cytotoxic T lymphocytes (CTL), and natural killer (NK) cells were investigated. Results
show that asbestos exposure impairs antitumor immunity through enhancement of regulatory T cell function and
volume, reduction of CXCR3 chemokine receptor in responder CD4+ T helper cells, and impairment of the killing activities
of CD8+ cytotoxic T lymphocytes (CTL) and NK cells. These findings were used to explore biological markers associated
with asbestos exposure and asbestos-induced cancers and suggested the usefulness of serum/plasma IL-10 and TGF-β,
surface CXCR3 expression in Tresp, the secreting potential of IFN-γ in Tresp, intracellular perforin level in CTL, and surface
expression NKp46 in NK cells. Although other unexplored cytokines in serum/plasma and molecules in these
immunological cells, including Th17, should be investigated by experimental procedures in addition to a comprehensive
analysis of screening methods, biomarkers based on immunological alterations may be helpful in clinical situations to
screen the high-risk population exposed to asbestos and susceptible to asbestos-related cancers such as mesothelioma.
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Background
Asbestos exposure causes various benign and malignant
diseases [1–5]. It induces one of the most typical forms
of pneumoconiosis, known as asbestosis, as a conse-
quence of relatively high doses of exposure. This condi-
tion is basically lung fibrosis [6, 7]. Immune competent
cells play an important role when asbestos fibers first
enter the human body, such as alveolar macrophages
that act against these foreign materials by activating the
NOD-like receptor family pyrin domain containing 3
(NLRP3: NALP3) inflammasome to produce interleukin
(IL)-1β and attract fibroblasts [8, 9]. Patients with asbes-
tosis suffer from various respiratory symptoms caused
by lung fibrosis, including shortness of breath, cough,
sputum, and symptoms of right-sided heart failure at the

advanced stage. In addition to asbestosis, asbestos ex-
posure causes benign pleural diseases such as pleural
plaque (PP) and diffuse pleural thickening (DPT). Al-
though patients with PP do not show any progression of
respiratory symptoms, those with DPT at the advanced
stage suffer from severe respiratory failures [1–5].
Moreover, asbestos exposure is known to cause malig-

nant diseases such as lung cancer and malignant meso-
thelioma (MM), as well as other cancers such as those of
the ovary, pharynx, and larynx [1–5]. MM remains an
incurable cancer, and therefore, the ability to detect the
very early stage of MM would be very important for its
treatment and possible cure [10–12].
There are various candidates for biomarkers of MM as

tumor markers. However, most of the tumor markers are
derived from molecules produced and secreted from
mesothelioma cells. This means that when the tumor
mass is relatively small, the levels of some tumor markers
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in serum might be low and then gradually increase as the
tumor develops [13–18].
The importance of these disease/tumor markers is their

potential use to screen the high-risk population exposed
to asbestos. This population includes the recent and past
workers in asbestos-handling factories, family members of
these workers, people who have a history of residing near
these factories, and workers employed in building demoli-
tion, as well as rubble processing workers utilized after
various natural and man-made disasters such as an
earthquake.
A single biomarker is not suitable to detect the occur-

rence of MM in these populations. Therefore, radio-
logical screening is used to detect PP or other findings
in chest X-rays or computed tomography of the chest.
However, the use of radiological methods for screening
involves important problems such as high cost and fur-
ther exposure to radiation. Moreover, a screening fre-
quency limited to once every 6 or 12 months is not
sufficient to detect the early stage of MM [19–21].
The immunological effects of asbestos on the various

circulating immune cells have not been investigated
thoroughly because the main target of asbestos fibers are
thought to be lung epithelial cells and pleural mesothe-
lial cells in regard to carcinogenesis, as well as immune
cells such as alveolar macrophage located at lesions of
asbestos-entering sites. However, silica particles, com-
prising Si and O2 and which represent the core compo-
nents of asbestos fibers chemically, cause alteration of
immune cells in various autoimmune diseases [22–24].
Although the physiological effects caused by silica and
asbestos differ, including those produced by fibers and
particles, asbestos fibers may influence the various circu-
lating immune cells in a manner similar to silica parti-
cles. In particular, the immunological effects of asbestos
may be the reduction of antitumor immunity as evi-
denced by malignant complications of asbestos exposure
detected after a long latent period such as 30 to 40 years
for MM [25–27].
Thus, we have been investigating the immunological ef-

fects of asbestos on various human immune cells such as
responder T cells (Tresp), regulatory T cells (Treg), CD8+
cytotoxic T lymphocytes (CTL), and natural killer (NK)
cells. Tresp cells are defined as CD4+CD25− T helper cells
which are able to proliferate by antigen stimulation. It is
commonly considered as memory T helper cells. Although
these investigations aimed to explore the immunological ef-
fects of asbestos, we found that some results could be uti-
lized to develop immunological screening methods for
asbestos exposure and the occurrence of mesothelioma. In
this review, findings regarding the immunological effects of
asbestos are introduced, and a method for constructing im-
munological biomarkers for asbestos exposure and detec-
tion of mesothelioma is discussed.

T helper cells
To investigate the effects of asbestos exposure on human
T cells, a cell culture model for continuous low-dose ex-
posure that simulated human exposure was established
using a human polyclonal T cell line immortalized by hu-
man T cell leukemia/lymphoma virus 1 (HTLV-1), desig-
nated as MT-2 [28, 29]. In the initial screening to select
the cell line, various virus immortalized and tumor cell
lines derived from human T and B cells were exposed to
chrysotile asbestos fibers. Among the cell lines including
MT-2, T cell tumors [MT-1; adult T cell leukemia (ATL),
Molt-4, CEM, and Jurkat; T cell acute lymphoblastic
leukemia (T-ALL)], and B cell lines [Epstein-Barr virus
immortalized B cell lines (KMS-9 and KMS-15), Raji; Bur-
kitt’s lymphoma, SUDHL-4; B cell lymphoma, KMM-1;
myeloma], the MT-2 cell line was most sensitive for
growth inhibition [30]. MT-2 was selected because it was
better to use an immortalized cell line not derived from
tumor cells and a T cell line rather than B cells to explore
the immune effects. Since the MT-2 cell line included
CD4+ cells and transient exposure to chrysotile resulted
in production of reactive oxygen species (ROS) and activa-
tion of the mitochondrial apoptotic pathway [28], cells
were initially exposed continuously to chrysotile at a con-
centration that induces apoptosis in less than half of the
cells. These cells were then monitored monthly for the ap-
pearance of apoptosis following the transient and high-
dose exposure to chrysotile. After approximately 1 year of
continuous exposure, an MT-2 subline showed resistance
to chrysotile-induced apoptosis [29]. This indicated that
cell features were changed by continuous exposure to as-
bestos. Independent sublines exposed to chrysotile or cro-
cidolite were established. cDNA microarray analysis of
these sublines showed similar patterns, which differed
from those of the MT-2 original cells [31].
The typical features of these sublines that differed from

the original cells included (1) increased production of IL-10
and transforming growth factor (TGF)-β [29, 32], (2) re-
duced expression of cell surface C-X-C chemokine receptor
type 3 (CXCR3) chemokine receptor [31, 33], (3) reduced
expression of intracellular interferon (IFN)-γ [31, 33], and
(4) increased expression of Bcl-2, anti-apoptotic mol-
ecule [29]. The decreased expression of CXCR3 and
higher expression of Bcl-2 were confirmed in peripheral
blood CD4+ (mainly Tresp population) cells derived
from PP and MM [29]. These changes were greater in
cases involving MM compared to PP. The findings indi-
cated that these cellular and molecular changes were
caused by asbestos exposure and advanced when meso-
thelioma occurred.
The MT-2 cell line was found to possess Treg func-

tion. Thus, Treg function in MT-2 original cells and sub-
lines exposed continuously to asbestos was useful
because of the excess production of IL-10 and TGF-β
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[29, 32], which are known to be typical soluble factors
secreted from Treg cells to inhibit the proliferative reac-
tion of Tresp against foreign antigens [34–36]. The Treg
inhibitory function was enhanced in continuously ex-
posed sublines when compared with that of the MT-2
original cell line by cell-cell contact. In addition, knock-
down of IL-10 or TGF-β using the siRNA method re-
sulted in reduction of the inhibitory function of the
sublines [37]. Moreover, continuously exposed sublines
showed reduced expression of Forkhead box protein O1
(FoxO1) transcription factor [38]. FoxO1 is known to
positively regulate breaking cell cycle regulators such as
cyclin-dependent kinase inhibitors (CDK-I; ink4 families
and Cip/Kip families) and negatively regulate accelerat-
ing factors such as cyclins. Reduced expression of FoxO1
in continuously exposed sublines was associated with
markedly enhanced cyclin D1 expression compared with
that in MT-2 original cells, and various CDK-Is exhib-
ited reduced expression [39]. In addition, knockdown of
FoxO1 in MT-2 original cells resulted in enhancement
of cyclin D1 expression. Moreover, the cell cycle pro-
gressing index represented by [S phase cell number di-
vided by G1 phase cell number] increased in
continuously exposed sublines relative to that of MT-2
original cells [39]. All of these findings indicated the
asbestos-exposed Treg exhibited enhanced function and
increased numbers.

NK cells
Similar to the aforementioned investigation of T helper
cells, the effects of asbestos fibers on NK cells were
studied using the NK cell line YT-A1 [40]. After more
than 5 months of culture with chrysotile asbestos, a con-
tinuously exposed subline showed reduced killing activ-
ity against K562 target cells, derived from a human
erythromyeloblastoid leukemia cell line commonly used
to examine the killing activity of human NK cells. A YT-
A1 subline exposed continuously to chrysotile showed
decreased cell surface expression of NKG2d and 2B4 ac-
tivation receptors, as well as a reduced intracellular per-
forin level compared with original YT-A1 cells which
were never exposed to asbestos. Additionally, signal
transduction leading to the phosphorylation of extracel-
lular signal-regulated kinases (ERKs) 1 and 2 in the
mitogen-activated protein kinase (MAPK) pathway was
impaired in the YT-A1 subline due to decreased expres-
sion of NKG2D [41].
We also examined the NK cell killing activity from

freshly isolated peripheral blood mononuclear cells
(PBMC) derived from healthy volunteers (HV), patients
with PP, and those with MM [40–43]. Results revealed
reduced killing activity in asbestos-exposed patients with
PP and MM. The surface expression levels of another
NK cell activating receptor, NKp46, were significantly

correlated with killing activities [40–43]. These results
indicated that asbestos exposure reduces the expression
of NK cell activating receptor and thereby causes impair-
ment of killing activity. These findings emphasized the
importance of the NKp46 expression level in NK cells of
human peripheral blood.

CTL
The effects of exposure to asbestos fibers on another im-
portant lymphocyte, CTL, were also examined in regard
to antitumor immunity. Initially, the effects of chrysotile
following in vitro induction of CTL by the mixed
lymphocyte reaction (MLR) using PBMCs from HV with
irradiated allo-PBMCs were estimated in relation to CD8
+ T cells [44]. Clonal expansion represented by prolifera-
tion of CD8+ cells and differentiation to CTL from CD8
+ cells defined by killing activity against allo-PBMCs, in-
crease of CD45RO and decrease of CD45RA surface
markers, increase of CD25 as an activation marker, and
production of IFN-γ were all impaired when MLR was
performed with addition of chrysotile asbestos. Further-
more, IL-2 in the supernatants did not change by much
at day 4 and day 7 during MLR with asbestos [44]. Since
IL-2 possesses an important role for clonal expansion of
CTL, we examined whether supplementation with IL-2
rescued the impairment of clonal expansion of CTL. Re-
sults showed that although supplemented IL-2 did not
increase the number of CD8+ cells or rescue changes in
CD45RA, RO, and CD25 expression, the killing activity
was recovered. Part of this recovery is explained by the
increase of intracellular granzyme B in CD8+ cells, par-
ticularly in the proliferating cells [45]. These results indi-
cated that asbestos disturbs the clonal expansion of
CTL. The supplemented IL-2 was not sufficient to re-
cover the impaired clonal expansion. Thus, other cyto-
kines such as IL-15 or stimulatory molecules bound on
the CTL cell surface may be important.
We investigated the functional properties of CD8+

lymphocytes in patients with PP and MM. CD8+ cell
status was examined using peripheral blood derived
from these patients. Although the total numbers of
PBMCs from PP and MM were lower than those from
HV, the percentage of CD8+ cells did not differ between
HV, PP, and MM. In addition, IFN-γ+ and CD107a+ (as
the marker of degranulation and the secretion of cell
attacking molecules such as granzymes and perforin)
cells in phorbol 12-myristate 13-acetate (PMA) and
ionomycin-stimulated CD8+ cells did not differ between
these three groups [45]. However, the percentage of
granzyme B+ and perforin+ cells in PMA/ionomycin
stimulated CD8+ cells was higher in the PP group com-
pared with HV. The MM group showed a decrease of
the perforin level in CD8+ cells after stimulation com-
pared with that of the PP group. These results indicate

Matsuzaki et al. Environmental Health and Preventive Medicine  (2017) 22:53 Page 3 of 7



that although asbestos-exposed patients such as those with
PP and MM possessed the common character of functional
alteration in CTL defined as an increase of memory cells,
CTL in MM exhibited impaired stimulation-induced cyto-
toxicity [46–48]. This was not observed in CTL from PP.

Explore biomarkers of asbestos exposure and occurrence
of MM
This review has outlined the many changes regarding
immunological status in asbestos-exposed patients such
as those with PP and MM. As shown in the left part of
Fig. 1, all of these changes indicated that asbestos expos-
ure causes impairment of antitumor immunity, such as
increased function and volume of Treg, decreased
CXCR3 and IFN-γ in Tresp, impairment of NK cell

killing activity with reduction of surface NKp46 expres-
sion, and disturbance of CTL function and numbers
with perturbation of killing molecules such as perforin
and granzymes.
Although a single marker may not be able to detect

previous or present asbestos exposure, or the occurrence
of MM, the studies detailed in this review indicate it
would be possible to combine several markers, such as
serum/plasma IL-10 and TGF-β concentrations, cell sur-
face expression level of CXCR3 in CD4+ cells, secreting
potential of IFN-γ in CD4- or CD8-positive cells, intra-
cellular expression of perforin in CD8+ cells, and the
surface expression of NKp46 in NK cells, as shown in
the right panel of Fig. 1. Moreover, it may be possible to
examine the mRNA expression levels of these molecules,

Fig. 1 Schematic presentation of the immunological effects of asbestos exposure on various lymphocytes such as regulatory T cells (Treg),
responder CD4+ T helper cells (Tresp), CD8+ cytotoxic T lymphocytes (CTL), and natural killer (NK) cells. All of the findings described in this review
indicate that asbestos exposure impairs antitumor immunity, as shown in the left panel of the figure. These findings can be used to explore biological
marker candidates, as shown in the right panel of the figure, and suggest the usefulness of serum/plasma IL-10 and TGF-β, surface CXCR3 expression in
Tresp, secreting potential of IFN-γ in Tresp, intracellular perforin level in CTL, and surface expression of NKp46 in NK cells. Although other unexplored
cytokines in serum/plasma and molecules in these immunological cells and Th17 should be investigated, including a comprehensive analysis of
screening methods, biomarkers based on immunological alterations may helpful in the clinical situation to screen the high-risk population exposed to
asbestos and to detect and treat asbestos-related cancers such as mesothelioma
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particularly the lymphoid cell type. In order to use im-
munological biomarkers or an immunological formula to
detect asbestos exposure and/or the occurrence of MM,
a standardized method must be employed regarding how
venous-drawn peripheral blood is divided, for example,
into plasma and lymphocytes (or into CD4+, CD8+ cells,
and NK cells). Additionally, it is necessary to examine
mRNA expression and molecules expressed intracellularly
in various lymphocyte subgroups. In addition, comprehen-
sive analyses of various cytokines in plasma/serum from
asbestos-exposed patients such as those with PP and MM
in comparison to HV should be performed to detect other
cytokines as biomarker candidates, as reported previously.
Moreover, the status of function and volumes of the Th17
subtype of helper T cells should be investigated since the
conversion and polarization of Treg and Th17 depends on
the cytokine status surrounding these cells such as IIL-6
and TGF-β [49–52].
If a formula or combined biomarkers based on im-

munological alteration caused by asbestos exposure are
obtained, the clinical advantages would include their ease
of use compared to current screening for asbestos expos-
ure using radiological methods with hazardous radiation
exposure, lower costs for screening, and an increased fre-
quency of examinations among the high-risk population
exposed to asbestos at present, recently, or in the past.

Conclusion
Investigations of the immunological effects of asbestos fi-
bers in various human immune cells such as Treg, Tresp,
NK cells, and CTL suggest biomarker candidates for the
biological detection of asbestos exposure and the occur-
rence of MM. It may be possible to use a combination of
markers or a formula representing the various changes in
immune cells, including cytokines produced from these
cells. Although additional investigations are necessary to
detect other altered molecules in various immune cells fol-
lowing asbestos exposure, immunological markers are bet-
ter than radiological screening in regard to costs, procedure
(only require drawing peripheral blood), and possibly accur-
acy. Further studies of the immunological effects of asbes-
tos exposure are required to fully explore the biological
alteration induced by asbestos exposure and to develop
clinical or preventive methods based on extracted markers
that will reduce the suffering of asbestos-exposed patients.
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